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Abstract—In this paper, we describe a novel approach to
understand and explain news spreading dynamics on Twitter by
using well-known epidemic models. Our underlying hypothesis
is that the information diffusion on Twitter is analogous to the
spread of a disease. As mathematical epidemiology has been
extensively studied, being able to express news spreading as an
epidemic model enables us to use a wide range of tools and
procedures which have been proven to be both analytically rich
and operationally useful. To further emphasize this point, we also
show how we can readily use one of such tools — a procedure
for detection of influenza epidemics, to detect change of trend
dynamics on Twitter.

I. INTRODUCTION

Recently, micro-blogging and specifically Twitter, have be-

come one of the fastest growing trends with an exponentially

increasing user base. Because of its real-time nature and

plurality of end user clients, Twitter has become an effective

method for information dissemination — helping it to be

formalized into a big media as both an influencer and a

reflector of real-time news.

Twitter, as a micro-blogging platform, lets users (twitterers)

publish statuses (tweets) limited by 140 characters. A user can

follow other users. Being a follower on Twitter means that the

user receives tweets from those the user follows. But, unlike

most social networks, the following or followed relationship

does not require reciprocation — the user being followed does

not need to follow back. A well-defined markup culture has

evolved for responding to tweets: RT stands for retweet, ‘@’

followed by a user identifier address, and ‘#’ followed by a

word represents a hashtag.

Because of its unique popularity and real-time characteris-

tics, a growing number of researchers have focused on Twitter

lately. Java et al. [7] investigated the motivation of twitterers

and the social network that ensues. Weng et al. [24] focused on

homophily [15] to find influential twitterers, and Cha et al. [4]

provided an empirical study on user influence on Twitter. To

take advantage of its real-time nature and large user base, there

are also on-going efforts to use twitterers as social sensors

to detect events. Sakaki et al. [19] proposed an algorithm to

detect earthquakes in Japan by monitoring tweets. Starbird

and Palen [22] showed that during mass emergency, retweets

are more likely than non-retweets about events. Lerman and

Ghosh [11] conducted an empirical study of user activities on

Digg and Twitter which results in finding some similarity of

between these two sites in news spreading. Another important

direction of study has been to discover how trends on Twitter

can be used as reflective indicators of the real-world sentiment

— ranging from opinion poll in elections to collective action

campaign [5].

As we can see, there has been a considerable amount of

research about social aspects and usability of Twitter. But, to

the best of our knowledge there has not been any attempt to

mathematically model news spreading on Twitter. Being able

to do so is critical to understand information-sharing behavior

and dynamics on Twitter, which is necessary for the effective

uses of Twitter from both personal users’ and corporate users’

views.

This paper aims to build a mathematical model to explain

how news actually spreads on Twitter. Specifically, in this

study we investigate how a Twitter activity can be described by

using well-known deterministic models for infectious diseases.

This deterministic model is simple enough to be operationally

useful and can also help us to identify the control factors of

the persistence and stability of popularity of a particular news

trend. There have been no research efforts on connecting well-

known epidemic models and news spreading, and furthermore

the potential results obtained from such a study will help us

gain an understanding in information dissemination dynamics

on Twitter.

II. EPIDEMIC MODELS

Traditional epidemiology studies diseases with linear mod-

els that consider individuals as independent units of observa-

tions. This process is based on Newtonian physics — however

complicated the disease mechanic may be, the relation of

causes to effects is straightforward. After introduced by the

French mathematician Henri Poincaré at the start of the 20th

century, a new paradigm of complexity has been introduced

into epidemiology. More recently, chaos theory [17] has been

developed that highlights the importance of nonlinear phenom-

ena in infection disease processes.

Usually two types of models are used in the study of infec-

tious diseases: stochastic and deterministic models. Stochastic

models rely on among-individual chance variations in risks of

exposure, diseases and other factors — allowing heterogeneity

in population. But stochastic models are very hard to set up

and need more data and many simulations to yield a useful

prediction. Deterministic models, also known as compartmen-

tal models, attempt to describe and explain what happens on

the average at the population scale.

2011 23rd IEEE International Conference on Tools with Artificial Intelligence

1082-3409/11 $26.00 © 2011 IEEE

DOI 10.1109/ICTAI.2011.33

163



Most models of infectious disease processes used are deter-

ministic because they require less data, and are relatively easy

to set up. In this paper, we focus on deterministic models only

as we concentrate on the behavior of a large scale population.

For small populations, stochastic models should be used [3].

A. Deterministic Modeling

Deterministic models categorize individuals into different

subgroups (compartments). The SEIR model, for example,

includes four compartments represented by Susceptible, Ex-

posed, Infectious and Recovered. The models also specify

the transition rate between the compartments. For modeling

a disease, it is necessary to have a realistic representation of

the biology of the disease — duration of ineffective period,

incubation period, immune status after infection and so on.

For example, the SEIR model considers the infected phase

accounting for a latent period of disease — when infected

individuals (exposed) go through a latent period before being

infectious. On the other hand, the SIR model assumes that

individuals are infectious as soon as infected — no latent

period to be taken care of. Some models assume long lasting

immunity after infection (SIR and SEIR) while other models

posit recoverds become susceptible again (SIRS and SEIRS).

To analyze deterministic models, they are usually represented

by differential equations describing the transitions between the

different disease compartments using continuous time steps.

For example, the SIR model can be represented in Figure 1

S(t) I(t) R(t)
λ γ

Fig. 1. SIR model.

where

• S(t) = number of susceptible at time t.
• I(t) = number of infectious at time t.
• R(t) = number of recovered at time t.
• λ = the rate of infection per unit time.

• γ = the rate at which an infectious individual recovers

per unit time.

Then, the differential equation system corresponding to the

SIR model is:

dS

dt
= −λ · S(t).

dI

dt
= λS(t)− γ · I(t).

dR

dt
= γ · I(t).

Here, dS
dt means change in S per small unit time dt. To be

more specific the equation

dS

dt
= −λ · S(t)

means that the compartment of susceptible depletes itself by

λ · S(t) as susceptible become infectious by the time interval

dt. Similarly, for the infectious compartments, new λ · S(t)
individuals are being added and r · I(t) individuals become

recovered by the time interval dt, and so on.

As the propagation of a disease depends only on the ability

of infectious agents to transmit the disease to the susceptible,

the number of the newly infected at each time step depends

on the contacts between infectious and susceptible individuals.

So, if we know the probability of an effective contact β, then

the rate of infection can be effectively expressed as

λ = β · I(t).
In that case the SIR model can be re-written as follows:

dS

dt
= −β · S(t) · I(t).

dI

dt
= β · S(t) · I(t)− γ · I(t).

dR

dt
= γ · I(t).

Depending on disease biology and available data, we can

build a more complex model to have a better understanding of

how a particular epidemic sets up in a population. For example,

if we want to allow entries of the new susceptible by birth and

mortality in the course of time as shown in Figure 2, where

• μ = birth rate per unit time.

• θ = death rate per unit time.

S(t) I(t) R(t)
λ γ

θ μ
θ θ

Fig. 2. A SIR model with birth and death rate.

Then the corresponding SIR models can be represented by

the following differential equations:

dS

dt
= −β · S(t) · I(t) +N(t) · μ− θ · S(t).

dI

dt
= β · S(t) · I(t)− γ · I(t)− θ · I(t).

dR

dt
= γ · I(t)− θ ·R(t).

where N(t) = S(t)+ I(t)+R(t), is the size of population at

time t.
The potential of infection in a population depends on the

basic reproduction number R0 that is defined as the average

number of persons directly infected by an infectious individual

during his entire infectious period when he enters a totally

susceptible population.

The threshold theorem established by Kermack and McK-

endric [9] says that if R0 gets smaller than 1, the disease

eventually disappears from the population because, on average,

each infectious individual cannot ensure transmission of the

disease to one susceptible resulting in lesser amplitude of

the disease spreading phase comparing to preceding ones. If
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R0 equals to 1 then, the disease remains endemic as one

infectious on the average spreads the disease to one susceptible

individual. On the other hand, if R0 is greater than 1, an

epidemic ensues. This also explains why the introduction of

infectious individuals into a community of the susceptible does

not automatically give rise to an epidemic outbreak.

III. NEWS SPREADING ON TWITTER

In our approach, there is a basic similarity between the news

dissemination on Twitter and the transmission of an infectious

disease among the individuals. In other words, each news topic

on Twitter spreads like ‘a contagious disease’, where

• The infectious are the twitterers who have participated

in news spreading by tweeting about that topic.

• The susceptible are the set of twitterers who follow the

infected twitterers as they receive those tweets (infectious

contacts) on their stream and as a result they too can tweet

about that topic (risk of being infected).

• As recency is an important issue in news spreading,

to penalize older contents, we assume that infectious

individuals lose their ability to spread news after a

certain amount of time — becoming the recoverd in

epidemiological terms.

To develop an epidemiological model for news spreading on

Twitter, it is necessary to pick a model and its corresponding

parameters that portray a complete and realistic picture. We

choose the SIR model because of the following observations.

• To highlight the importance of recent tweets, we put

more emphasis on newly infectious individuals. In other

words, infectious individuals can not remain infectious

for ever, which excludes SI-related models from consid-

eration.

• When individuals tweet about a topic, it appears on the

streams of the susceptible immediately. So, there is no

latent period of the spreading, excluding SEIR-related

models from consideration.

• Usually participating on a news spreading is a one-time

shot per news cycle, making SIRS models unusable for

this case.

We also allow the entry of a new susceptible similar to

the birth rate in traditional epidemiology as tweets from

infectious individuals reach to their followers’ stream causing

the population size to grow. But, unlike in traditional epidemi-

ology, new susceptibles can be introduced only from infectious

individuals. So, our proposed model can be represented by the

following differential equations:

dS

dt
= −β · S(t) · I(t) + I(t) · μ

dI

dt
= β · S(t) · I(t)− γ · I(t)

dR

dt
= γ · I(t)

with parameters comparing to traditional epidemiology shown

on Table I.

A. Parameter Selection
As different diseases have different dynamics determined

by the demographic and biological characteristics (transition

rates), the next step after selecting a model is to collect data

and find appropriate values of parameters that can explain

dynamics of disease spreading.
One important assumption in this model is, all new in-

fectious individuals can arise from the susceptible set. But,

as a news item becomes a more mainstream media topic,

this assumption may not reasonably hold in our case, as

individuals can also get infected from the outside of the twitter

population thus becoming an infectious without ever being in

the susceptible set. To measure this effect, we focus on three

kinds of trends.

• Events internal to Twitter — events that arise and die

away within Twitter without any external interference.

For this, we focus on ‘Follow Friday’ trend, where on

every Friday users suggest other user(s) to follow. This

has been a recurring event on Twitter after introduced by

a user on January 16th, 2009 [1].

• Real time news events, in other words, the traditional

news. For this, we focus on the games in the world cup

soccer between USA and Ghana on June 26th, 2010.

• Social events — which are not news in the traditional

sense, but, as each important social event usually becomes

a trending topic on Twitter because of the sheer number

of tweets related to it, we decided to track one such an

event. For example, the Memorial Day in the USA.

1) Data set: For each of these events, we maintained a set

of infectious, susceptible and recovered individuals over time

by using Twitter API.

• We used stream API to track a particular keyword and

in every time epoch Δt, we updated the set of infectious

individuals I(t) by retrieving the users who tweeted about

that topic in the [t − Δt, t] interval. Though, unlike

traditional epidemiology — where the duration of epochs

usually ranges from weeks to months, in our case the

duration of an epoch is understandably much smaller —

ranging from one to four hours.

• We then retrieve all the followers F of each infectious

individual i ∈ I(t), and after filtering out any followers

who are also in I(t), add them to the susceptible set S(t)
• We also remove infectious individuals from I(t) who

have not tweeted about that topic in the [t − 2Δ, t]
interval to mimic a recovering process and add them to

the recovered R(t) set.

For the Memorial Day event, we collect 546, 320 tweets

starting from 28th of May over 7 days. Similarly, for ‘Follow

Friday’ we collected 115, 300 tweets starting from 20th of

May to 22nd of May. And, for the match between USA vs.

Ghana, we collect 165, 779 tweets starting from 25th of June

for 3 days.

B. Simulation Results
Given the above data set, our objective is to determine

appropriate values of parameters that reasonably explain the

165



Epidemiology Information diffusion on Twitter
S(t) Set of susceptible individuals at time t. Set of users who have received tweets from infectious individuals

at time t.
I(t) Set of infectious individuals at time t. Set of individuals who tweeted about that topic at time t.
R(t) Set of individuals who have recovered at time t. Set of infectious individuals who have been inactive for a pre-

defined period of time by not tweeting about that topic.
β Force of infection: Infection rate. Spreading rate.
μ Birth rate. Number of new followers who receive tweets from infectious

individuals per unit time per infectious individual.
γ Recovery rate. 1/average duration of infectiousness.

TABLE I
MODEL PARAMETERS IN EPIDEMIOLOGY VERSUS NEWS SPREADING.

Fig. 3. Memorial Day Simulation with μ = 4.33 · 10−05, β = 5.38 ·
10−02, γ = 1.02 · 10−01.

Fig. 4. World Cup USA Simulation with μ = 1.4 · 10−04, β = 3.43 ·
10−01, γ = 6.635 · 10−01.

spreading of news. To do so, we perform a multiparameter

least-square fit by using the optimize module provided by

SciPy [8].

From Figure 3, we can see that our model does fairly well

except in the later region. That’s because, Memorial Day —

being a social event, does not follow our assumption that

infectious individuals can only arrive from the susceptible set.

In other words, the number of infectious individuals entered

from outside of the population is quite high. But the point

is, even though the assumption of mass action principle is

arguable here, our model predicts the rise of the trend quite

well.

In contrast to the Memorial Day, the event of world cup

match being played between USA and Ghana is more of a

traditional real-time news. As we can see in Figure 4, our

Fig. 5. Follow Friday Simulation with μ = 1.612, β = 5.859 and γ =
6.274.

model performs much better than the Memorial day event.

We believe that the better performance of our model here is

due to the fact that the population (the susceptible, infectious

and recoverd) in this case is more connected by either spatial

or user-preference similarity. In other words, “reciprocity” is

high between infectious and susceptible twitterers causing the

presence of homophily and less sporadic outside interference.

In Figure 5, we can see that the number of incidences for

the Follow Friday event is quite irregular contradicting the

common trend of spreading dynamics for both the Memorial

Day and the world-cup event as shown in Figure 3 and Figure

4, respectively. We assume that this happens because of the

time difference on different time zones as we did not restrict

our query to track tweets only from the USA. But, even in this

highly irregular case, the performance of our model is quite

good which is expected as this event arises and dies down

within Twitter without having almost any external influence.

Though, we can not compare our model performance with

any existing work, as to the best of our knowledge, this is

the first approach in modeling twitter dynamics, but from

the above figures, it seems quite plausible that a system of

differential equations can be used to successfully emulate the

trend spreading dynamics on Twitter for a range of events.

This observation supports our hypothesis that information

diffusion dynamics on Twitter can be explained by using an

epidemic model. In other words, we can infer that the life

cycle of trends on Twitter is similar to how epidemics set

up in a population — initially, the number of infectious I
and recoverds R are 0. As a trend begins to spread I , R
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increases and the dynamics of S change depending on both the

force of infection and birth-rate. After the number of infectious

individuals who participated to spread news increases to reach

a peak, it decreases and eventually the trend dies down,

as infectious individuals become less effective in spreading

the trend showing that recency is very important in trend

popularity.
So, by drawing analogy between disease spreading and

information diffusion on Twitter, we can explain and predict

trend dynamics by plugging appropriate parameters into our

model.

IV. DETECTING CHANGE OF TREND DYNAMICS

One important aspect of being able to express trend spread-

ing on Twitter as an epidemiological model is, it enables us

to use a wide number of tools and techniques to use for

both predicting and explaining trend behavior. For example,

surveillance of an infectious disease is a quite well-studied

subject. Modern surveillance systems emphasize on detection

of an epidemic as early as possible as it enables prompt

intervention which is very important due to the threat of new

infections, as well as modified strains of old infections.
In this section we show that change of trend dynamics on

Twitter can be detected by extending one such surveillance

system used for detection of influenza epidemics.

A. Influenza Surveillance System
Influenza is an acute respiratory illness caused by an in-

fluenza virus. Influenza epidemics occur almost every year

with peak prevalence in winter. According to WHO [16], each

year Influenza causes three to five million cases of severe

illness and resulting in 250, 000 to 500, 000 deaths.
The traditional approach to influenza surveillance focuses

on determining a baseline distribution of the susceptibles to

death cases during a non-epidemic period from which an alert

threshold can be established. Both Serfling’s method [21] used

by the Centers for Disease Control and Prevention (CDC)
and historical limit methods used by European Influenza

Surveillance Network (EISN) are examples of this approach.

But in our case, to detect trend changing on Twitter, this

methodology has a major drawback — the lack of predefined

epidemic and non-epidemic periods to model the baseline

distribution for each trend.
As the same issue of lacking historical data arises while

detecting the outbreak of a new disease or old disease with

changed behavior, a number of alternatives to the traditional

baseline method have been suggested. LeStrat and Carrat

[10] introduced a Bayesian perspective that observations are

supposed to be independent given our belief about the epi-

demics, and they used a hidden Markov model to segment

influenza data series into epidemic and non-epidemic series.

This Bayesian perspective has been extended by Rath et al.

[18], Madigan [13] and Sebastiani et al. [20]. For our purpose,

we focus on a more recent approach by Martı́nez-Beneito et

al. [14] which uses a Markov switching model to determine

the epidemic and non-epidemic phases from surveillance data

which consists of a series of differenced incidence rates.

B. Data

In this approach, we use a series of differenced incidence

rates which enables us to use autoregressive modeling to

analyze data. In particular, a first order differenced series,

being stationary — as shown in Figure 6, allows us to

restrict our study to its variability at each moment as it has

a zero mean. In other words, non-epidemic dynamics are

characterized by small random changes around zero, while

in the epidemic phase, dynamic changes are greater and inter-

related. So, depending on whether the system is in an epidemic

or non-epidemic phase, it can be modeled as a first-order

autoregressive process or with a Gaussian white noise process,

respectively.

Fig. 6. Original incidence rate (on top) and first order differenced rate
(bottom).

The same approach of using differenced series to distinguish

between epidemic and non-epidemic phases has also been used

by Barón [2].

C. Hidden Markov Model

The main idea here is to determine epidemic and non-

epidemic phases from the series of differences using a two-

stage Markov model. Let Ii denote the difference of rates

between time epochs i+1 and i. Ei is an unobserved random

variable which indicates the current phase of the system — 1
for being in epidemic; 0 for being in non-epidemic. And the

transition probabilities of Ei are given by

Pk,l = P (Ei+1 = l|Ei = k),

where k, l ∈ {0, 1}. Then we can model the conditional

distribution of Ii either as an autoregressive process of order 1

or as a Gaussian white noise process depending on the current

value of Ei as follows:

I1|(E1 = 0) ∼ N(0, σ2
0).

I1|(E1 = 1) ∼ N(0, σ2
1).

Ii|(Ei = 0) ∼ N(0, σ2
0).

Ii|(Ei = 1) ∼ N(ρ · Ii−1, σ
2
1).
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where variance σ2
k depends on the phase of the system.

The next step is to specify the prior distribution of parame-

ters. Following the suggestion of Gelman [6], we choose uni-

form distributions for standard deviations of random effects. In

addition to that, we also note that σ2
1 is related to the epidemic

phase where σ2
0 denotes a random variation, so the later value

should be lower which encourages the use of the following

hierarchical steps to describe our prior knowledge:

θlow ∼ Unif(a, b).

θmid1 ∼ Unif(θlow, b).

θmid2 ∼ Unif(θmid1, b).

θhigh ∼ Unif(θmid2, b).

σ0 ∼ Unif(θlow, θmid1).

σ1 ∼ Unif(θmid2, θhigh).

Here, a and b are hyper-parameters. By using this hierarchi-

cal structure also enables us to avoid the identifiability problem

[23] between periods in the MCMC process. We also associate

the following usual non-informative prior for ρ, P0,0, P1,1:

ρ ∼ Unif(−1, 1).
P1,1 ∼ Beta(0.5, 0.5).

P0,0 ∼ Beta(0.5, 0.5).

D. Results

We employ Markov Chain Monte Carlo (MCMC) methods

to infer analytical estimation. For that, we use OpenBUGS

[12] to carry out the inference.

Fig. 7. Posterior probability of being in the epidemic state (at the bottom)
corresponding to the actual incidence rate(at the top).

Figure 7 and Table II show the results of inference for

the Memorial Day incidence rate data. The results have been

obtained by using 4 independent chains of simulations with

20000 iterations, discarding the first 10000. Values for a and

b have been set to be 20 and 1622 respectively, as the biggest

difference of rates is 1622 and a is set to 20 to make sure

that the posterior distribution of standard deviations does not

converge to 0.

In Figure 7, we show the posterior probability of being in

an epidemic phase — corresponding to the posterior mean of

state variable Ei. These probabilities allow us to quantify the

possibility of being in an epidemic state during each epoch —

enabling for detection of trend change. For example, when for

any topic the probability of being in an epidemic state exceeds

0.5, we can assume that the particular topic is trending.

Table II shows the posterior mean and the 95% posterior

credible interval of the parameters. One important point is the

strictly positive value of ρ, which justifies the autoregressive

process used for the epidemic phase. From the high values

of P0,0 and P1,1, it is apparent that the model is more

likely to be in the same phase as it was during the previous

epoch. Another point to note here is the distribution of

θlow, θmid1, θmid2 and θhigh lies in seemingly different inter-

vals, which validates the use of the current disjoint hierarchical

structure as the parent of variances for different phases.

Para- Posterior 95% Credi-
meter Mean ble Interval
θlow 266.0 [26.77, 574.2]
θmid1 346.1 [43.65, 1184.0]
θmid2 476.2 [65.67, 1299.0]
θhigh 557.5 [127.8, 1384.0]
ρ 0.9934 [0.9849, 0.9994]

P0,0 0.9731 [0.9407, 0.9941]
P0,1 0.02688 [0.0059, 0.0592]
P1,0 0.04763 [0.0105, 0.1052]
P1,1 0.9524 [0.8948, 0.9894]

TABLE II
POSTERIOR MEAN AND THE 95% CREDIBLE INTERVAL OF THE

PARAMETERS.

From the above results, it is apparent that our model can be

used as a notification system which raises an alarm when there

is a change of Twitter dynamics. As shown in previous works

[19, 22, 5], such a notification system can be used in a number

of situations – ranging from mass emergency responses to

public sentiment measurement. Though, an important novelty

with respect to existing works is that unlike existing works,

our model is not limited by the assumption that only a

single instance of the target event may exist at any time —

for example the method proposed by Sakaki et al. [19] can

not differentiate between two or more earthquakes happening

almost simultaneously. Our method can differentiate between

recurring events happening in quick succession because of

a direct consequence of the Markovian behavior defined in

our model which enables it to adapt to quick phase-switching

of trends by allowing any number of changes in subsequent

epochs.

V. CONCLUSIONS

This paper focused on building a mathematical model of

news spreading on Twitter. To do so, we have shown that well-

known deterministic compartmental epidemic models can be

extended to explain dynamics of trend spreading for various
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types of trends including real-time news as well as social

events. As epidemiology has been extensively studied, it is

quite useful to be able to express a process as an epidemic

model, which opens up an array of analytically rich tools that

are known to work in real life situations. We also pointed out

this advantage by showing that one such tool can be readily

extended for detecting change in trend dynamics on Twitter.

For future work, we plan to focus on two possible exten-

sions. One is to build a real-time online system for early

detection of attention gathering trends from streams of tweets.

Another potential extension to our work would be modeling

the information spreading on Twitter as a stochastic epi-

demic model. As stochastic models can consider the among-

individual variation in risks of exposure — enabling us to

introduce heterogeneity in our modeling. These can lead to

a better controlled and more realistic system as we can then

consider the influence of users in spreading news.
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