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ABSTRACT
Alertness is a crucial component of our cognitive performance.
Reduced alertness can negatively impact memory consolida-
tion, productivity and safety. As a result, there has been an
increasing focus on continuous assessment of alertness. The
existing methods usually require users to wear sensors, fill out
questionnaires, or perform response time tests periodically,
in order to track their alertness. These methods may be ob-
trusvie to some users, and thus have limited capability. In
this work, we propose AlertnessScanner, a computer-vision-
based system that collects in-situ pupil information to model
alertness in the wild. We conducted two in-the-wild studies
to evaluate the effectiveness of our solution, and found that
AlertnessScanner passively and unobtrusively assess alertness.
We discuss the implications of our findings and present op-
portunities for mobile applications that measure and act upon
changes in alertness.
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INTRODUCTION
Alertness is the state of readiness that enables us to respond
to stimuli. The state of being alert plays a major role in our
daily activities, affecting how we learn, solve problems, and
remember facts and events [45]. However, there are several
factors that can affect alertness, including circadian rhythms,
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sleep patterns, and stimulants such as coffee, which cause
alertness to fluctuate during the day.

Given the importance of alertness in daily life, researchers
have studied many interventions designed to improve alert-
ness, such as napping [21] and exposure to blue light [47].
Researchers have also explored how to optimize activities
based on alertness level, such as the 90-minute focus tech-
nique [15]. However, in order to build effective solutions, it
is crucial to understand how alertness changes over time. For
this purpose, a variety of methods have been developed and
used.

Many techniques used to assess alertness involves using ques-
tionnaires [7, 24, 25]. Although questionnaires are widely
used, there are conflicting findings regarding the reliability
[22, 46]. In practice, individuals may not be be able to reliably
gauge their own alertness level and report that in a question-
naire.

Given the limitations of questionnaires as instruments to mea-
sure alertness, researchers proposed other objective methods.
One method that has become popular is the Psychomotor Vigi-
lance Task (PVT) [18], which assesses alertness by measuring
reaction time. In PVT, a visual stimulus is presented to the sub-
ject at random time intervals. The subject is asked to respond
as soon as she sees the stimulus (e.g., by pressing a button).
Although there are mobile implementations of PVT [19, 27],
the methods require between 1 and 10 minutes to complete,
rendering it inconvenient and impractical to use several times
per day.

Another approach that can be used to assess alertness is the
measurement of physiological changes. Previous research
shows that physiological signals, such as brainwaves, eye
movements, and blinks, can be used to reliably assess alertness
level. This can be done using devices such as eye trackers,
electroencephalograms (EEG) [26, 33], and electrooculog-
raphy (EOG) [8]. However, most of the solutions used to
measure alertness through physiological signals are either too
burdensome or require constant calibration, rendering them
impractical to use in-the-wild.

http://acm.org/about/class/1998/
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Aiming to measure users’ cognitive states in-the-wild, re-
searchers have developed solutions for predicting states such
as boredom [37] and alertness [5]. Although the methods
proposed are effective, they require users to actively use their
phones to extract the features for the models. Given the high
variability in how individuals use their phones, building a pre-
dictive model might require a personalized model and labeled
data, which imposes an additional burden on the end user.

Due to the limitations of existing alertness-measuring solu-
tions, one question that arises is how to measure a user’s
alertness with minimal or no effort from the user. In this paper
we present a solution: assessment of alertness by measuring
pupil size from pictures taken by smartphones, either manually
or automatically. We developed a mobile application, called
AlertnessScanner, and conducted two studies to evaluate the
effectiveness of our method. In both studies, we found that
the method can be reliably used to infer alertness and requires
minimal effort from the user.

In this paper, our contributions are threefold:

• We developed a system that captures in-situ pupil informa-
tion for assessing level of alertness in the wild. We also
implemented a system that uses computer vision to automat-
ically infer alertness. We have made this computer vision
based feature generation and learning code available for the
community 1.

• We conducted two in-the-wild studies to evaluate the effec-
tiveness of AlertnessScanner. In the first study, AlertnessS-
canner achieved a mean RMSE of 63.72 ms using single
picture taken manually; in the second study, it achieved
a mean RMSE of 43.28 ms with a burst of pictures taken
automatically. The results from both studies suggest that
the method can be reliably used to assess alertness.

• Finally, we discuss the implications of our system and find-
ings, and present some opportunities for applications that
measure alertness changes and act upon them.

RELATED WORK

Subjective Measures
There are several commonly used subjective measures used
to evaluate alertness. For instance, the Karolinska Sleepiness
Scale (KSS) is a nine-point Likert scale that describes the sub-
ject’s state of drowsiness [7]. Another example is the Stanford
Sleepiness Scale, which is a seven-point Likert scale which
ranges from “feeling active, vital alert, or wide awake" (score
= 1), to “no longer fighting sleep, sleep onset soon" (score
= 7) [24]. The Epworth Sleepiness Scale (ESS) is a simple
questionnaire based on retrospective reports of the likelihood
of dozing off or falling asleep in a variety of different situ-
ations [25]. Unlike these discrete scales, Visual Analogue
Scale (VAS) [9] asks participants to mark a position on a
10-cm horizontal line in between two endpoints to indicate
their sleepiness level.
1The code for computer vision based framework described in this
work will be available : https://vtseng@bitbucket.org/vtseng/
alertnessscanner.git

These self-report measures provide a simple and quick way
to assess alertness. However, there are conflicting findings
about whether self-report is a reliable measurement for alert-
ness. Some studies have shown that self-reports of sleepiness
and self-assessments of performance capability are unreliable
[22, 46], and the onset of fatigue occurs before participant
perceives sleepiness [36]. Other studies found that subjec-
tive assessments align with objective measurements [11, 20].
Aside from reliability, the subjective assessment can result in
significant user burden. As a result, it may be very difficult to
collect data continuously.

Objective Measures
Reaction Time Test

Apart from measuring subjective feeling, a number of studies
have proposed objective measurements based on reaction
time. The Psychomotor Vigilance Test (PVT) [18] is a widely
used reaction time test. Its initial implementation required
a specialized hardware device. The device shows a visual
stimulus at random time intervals and the user has to press a
button as soon as the visual stimulus appears. Longer mean
or median response time, more lapses and increased number
of false responses all indicate decreased alertness [38]. The
length of the test ranges from 1 to 10 minutes [19, 28]. The
original implementation required specialized hardware, but
Kay et al. developed an Android-based implementation of
PVT [27], which enables in-situ measurement using consumer
devices.

These methods provide an objective assessment of alertness
and can be generalized to different participants. The major
downsides to these methods are that they are tedious and
time-consuming, and they may even induce more fatigue
in participant during the test. Consequently, the number
of measurements that can be conducted in a day and the
granularity of the information on how a participant’s alertness
changes over time might be limited.

Physiological Measures

Physiological signals have also been widely used to assess
alertness objectively. For example, Electroencephalograph
(EEG) can be used to assess electrical activity in the brain
which correlates with alertness level [26, 33]. Similarly,
electormyograph (EMG) has also been used for inferring alert-
ness level. It records electrical activities of muscle, such as
forearm muscle or facial muscle. EMG measurement is low to
moderate for people who are alert, and virtually non-existent
for people who are drowsy [8]. Eye activity also reveals a
lot of information about alertness state. Electrooculogram
(EOG) has been widely used to track eye features that indicate
alertness states including slow eye movement, increased blink
rate and prolonged blink duration[30, 42]. However, these
kinds of physiological methods require special and costly
hardware (e.g. electrodes placed on the skin) which might not
be feasible to be deployed in the wild for a long period of time.

To make eye-tracking based methods more scalable, a number
of recent studies have focused on developing fatigue detection
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systems using smartphone sensors. Most of these methods
aim to track alertness in the context of driving. For example,
He et al. [23] used smartphones to monitor the frequency of a
driver’s head nod, head rotation, and blinking during simulated
driving tests. WakeApp [6] continuously tracks the percentage
of eyelid closure (PERCLOS) over the pupil over time to infer
alertness states. These methods can only detect pronounced
changes in alertness, namely staying awake and falling asleep,
but not subtle changes in alertness.

Pupil size is another physiological indicator of alertness
that can be objectively measured. The size of the pupil is
controlled by two complementary nervous systems — the
sympathetic nervous system and the parasympathetic nervous
system. When a person is alert, the sympathetic nervous
system causes the pupil to dilate to facilitate information
intake. On the other hand, if a person is drowsy, the
parasympathetic nervous system will take over and cause the
pupil to constrict [12, 29, 51, 54]. Pupil size has been shown
to be a reliable indicator of fatigue [36] and sustained alertness
[10]. However, using pupil size to assess alertness in the wild
requires handling of a number of computational challenges
including efficient image processing and controlling for
environmental light. In this paper, we aim to address
these computational challenges and investigate the feasi-
bility of using pupil size as an indicator of alertness in the wild.

ALERTNESS SCANNER
We developed an Android application that measures pupillary
response (the change in pupil size) using pictures captured by
the front-facing camera of a smartphone. In this section, we
describe how our application works.

One method used by researchers to measure pupillary response
is calculating the pupil diameter in pixels. This method is
usually used when eye images are taken by pupillometer or
eye tracker, in which the distance between the camera and the
eye is constant. However, this is not the case for pictures taken
by smartphones, since users can face their phones at different
distances. Depending on the distance between the eye and the
smartphone camera, the pupil size might differ even when the
alertness level of the user remains the same.

In order to address the aforementioned issue, we use pupil-
to-iris ratio (PIR) as a measure for pupillary response. As
the human eye attains its full size at the age of thirteen, the
iris diameter can be regarded as a constant, and the size of
iris diameter in an image can be used as a reference [34].
Therefore, PIR is consistent regardless of the distance and
angle from which the image is taken.

We developed an unsupervised computer-vision-based algo-
rithm to extract the PIR measure. The method consists of
eye detection, iris segmentation and pupil segmentation. A
summary of the method is presented in Figure 1.

The first step of our method is detecting participant’s eyes.
This is accomplished with OpenCV’s Haar cascade classifier
[2]. After detecting the eyes, we employ a method to detect
the iris. One issue of detecting the iris is that light reflection on

Figure 1. Framework for inferring alertness using pupil to iris ratio

(PIR)

the eye results in a circular bright spot, which can be misclas-
sified as the iris. To address this issue, we use a morphology
transform: first inverting the color of the image and then per-
forming closing [3] to remove specular reflections. After that,
we employ Daugman’s integro-differential operator to identify
the location of the iris in the given image [17]. Daugman’s
integro-differential operator is given by

maxr,x0,y0

����Gs (r)⇤
∂
∂ r

I

r,x0,y0

I(x,y)
2pr

ds
���� (1)

where Gs is the Gaussian smoothing function with scale s ,
and ⇤ denotes convolution.

Given an input image, Daugman’s integro-differential operator
scans the entire image domain (x,y) to iteratively calculate the
normalized contour integral of I(x,y) along a circular arc ds of
radius r and center coordinates (x0,y0). The circle that has the
greatest contour integral derivative with parameter (x00,y

0
0,r

0)
is the geometry of the iris. In other words, (x00,y

0
0) is the center

and r0 is the radius of iris.

After localizing the iris region, we can perform Daugman’s
integro-differential operator again to find the boundary of the
pupil. Note that both pupil and iris are circular and concentric,
and that the radius of the pupil is smaller than the radius of
the iris. As a result, the pupil can be identified as the circular
contour with the highest integral derivative within the iris
region. In other words, when applied to iris region, the result
of Eqn. 1 yields the center and the radius of the pupil. To
prevent the occlusion of eyelids and makeup from affecting
the iris and pupil localization, we only compute the contour
integral in Eqn. 1 with q in the range of �45� ⇠ 45� and
135� ⇠ 225�.

Finally, to calculate the PIR we use the two-box method [32,
35, 39, 41], in which two parallel rectangles are drawn along
the same axis (horizontal axis in our case). We set one rect-
angle with width equal to the diameter of the iris, and one
smaller rectangle with width equal to the diameter of the pupil
. The ratio of the smaller rectangle’s width to the bigger rect-
angle’s width is the PIR. This method is shown to be reliable
for estimating PIR when eye images are taken from various
angles and at various distances from the camera.

FEASIBILITY EVALUATION
Before studying if it is possible to measure a user’s alertness
with AlertnessScanner, we decided to conduct a feasibility
study to evaluate if the application could accurately detect the
eyes, pupil, and iris of the user with front-facing camera of
a smartphone. For this purpose, we recruited 2 participants,



Figure 2. Examples of pictures in which the eye, pupil or iris were incor-

rectly detected

Figure 3. Example of picture in which the eye, pupil and iris were cor-

rectly detected

who collected data during one week using a Google Nexus 5
smartphone.

Both participants received several notifications per day at ran-
dom time intervals, prompting them to take pictures of them-
selves using the frontal camera. A total of 50 pictures were
collected by one participant, and 46 by the other. All pic-
tures collected were then used as input for our algorithm. Our
algorithm generated pictures with an annotation of the eye,
pupil, and iris locations. After generating the pictures, one of
the authors verified if the eye, pupil, and iris were correctly
detected. This was done by manually checking the annotated
images and comparing them to the pictures without the anno-
tations. Figure 2 shows examples of pictures in which the eye,
pupil, and iris were incorrectly detected, and Figure 3 shows
an example in which everything was correctly detected.

The results of our feasibility evaluation were not very encour-
aging. The method was able to detect the eye, pupil, and iris
correctly in only 36% of the pictures taken by one participant
and 32% taken by the other. In order to improve the detec-
tion, we used one approach for facilitating the detection of
the pupil and iris: removal of the infrared (IR) filter of the
smartphone. The removal of the IR filter reduces specular
reflections, making it easier to detect contours of pupil and iris
even for people with dark eyes. Figure 4 shows an example
of a picture collected with the IR filter and a picture without
the IR filter. As the pictures show, the contours of the iris and
pupil get more pronounced after the removal of the IR filter.

After removing the IR filters from two smartphones, the same
participants that from the first data collection collected data
over a week period using the modified smartphones. We no-
ticed a large improvement in the detection. The method was
able to correctly detect the eye, pupil, and iris in 71% of the
pictures taken by one participant and 52% of those taken by

Normal 
Camera

Infrared 
Camera

Figure 4. The image on the left was taken by normal phone camera,

and the image on the right was taken by phone camera with the infrared

(IR) filter removed. Removal of IR filter reduces specular reflections and

makes it easier to detect pupillary boundary even for dark-eyed partici-

pants.

the other. By manually looking at the pictures in which the eye,
pupil, or iris were incorrectly detected, we noticed some issues
in the picture quality, including bad lighting conditions, blur,
and even closed eyes. We realized that these issues could be ad-
dressed by allowing our mobile application to show a preview
of the picture and by asking participants to check the quality
of the picture before saving it in the app. After implementing
these changes in the application and in the study protocol, we
decided to conduct the first study, which is presented in the
next section.

STUDY I
The aim of this study was to assess whether we could use
pupil information extracted from phone-captured facial images
to predict users’ level of alertness. Based on the feasibility
evaluation described earlier, smartphones with the IR-filters
removed were used in this study to ensure the quality of images
collected.

Participants
To recruit participants, we used snowball sampling and public
noticeboards. During the initial meeting with a participant,
we described the purpose and steps of the study in detail.
The participants then signed a consent form. We gave each
participant a Google Nexus 5 phone with AlertnessScanner,
our customized data collection app. During the onboarding
interview, we also demonstrated how the app works. The study
lasted for three weeks. Participants were given compensation
based on the duration they participated in the study ($5 for each
week) and compliance rate ($0.5 for each completed task). All
collected data were anonymized and the Institutional Review
Board approved all the study procedures.

In total, 20 participants signed up for the three-week study. In
this analysis, we filtered out data from five participants with
compliance rate lower than 20%. The rest of the fifteen par-
ticipants (5 blue-eyed, 1 green-eyed, 9 brown-eyed; 9 ranging
in age from 18 to 22, 6 ranging in age from 23 to 27) had an
average compliance rate of 63%(S.D. = 22%).

Data Collection
Our phone app collects data in two ways: (1) a sleep journal,
which was collected once per day at 10 AM and (2) screen-
unlock images, user-captured images, ambient light intensity,
time of day, and Psychomotor Vigilance Task (PVT), which
were collected every 3 hours between between 9 AM and



midnight (12 AM). Participants were prompted to complete
PVT by phone notifications. We will describe the data we
collected in detail.

Sleep Journal

Sleep, sleep duration in particular, is another factor that affects
a person’s alertness during the day [50]. Therefore, we also
collected information about daily sleep patterns. Participants
were prompted to complete a sleep journal every day at 10AM.
The journal entries included questions about when they went
to bed and when they woke up, which later allowed us to
calculate their sleep duration each day.

Screen-unlock Image

To help us assess the quality of images passively captured in
a naturalistic setting, our app took a picture using the front-
facing camera each time the phone was unlocked. As such,
it did not require any user interaction. We did not use these
images for developing models but instead used them to assess
the feasibility of a completely automated alertness assessment
system.

User-captured Image

In this study, we focused on assessing alertness using pupil
information from facial images. To ensure good image quality
and a sufficient quantity of images for modeling, participants
were prompted to take an image of their face using the front-
facing camera before the PVT session. Participants could see
a preview of the facial image before the image was saved to
ensure the quality of the image. The resolution of Google
Nexus 5’s front-facing camera is 1.3-megapixel (960 ⇥ 1280).

Ambient Light Intensity

Pupil size is affected not just by alertness but also by light.
Pupils constrict when they are exposed to light and dilate in
the dark. To account for this effect, we also recorded levels
of environmental light while taking screen-unlock and user-
captured images. For this, we used the light sensor in the
phone.

Psychomotor Vigilance Task

We used Psychomotor Vigilance Task (PVT), an objective
assessment of alertness, as our ground truth. PVT is a reaction-
time task that measures the speed with which subjects respond
to a visual stimulus [1, 28]. We employed PVT-Touch [27],
which is a validated Android-based PVT implementation. Dur-
ing the task, participants are shown stimuli at random time
intervals and asked to respond to these stimuli by touching the
screen. These reaction times were recorded in milliseconds.
Each PVT session was around 3 minutes long.

Data Processing
In this study, we extracted the following features: (1) pupil
to iris ratio, (2) light intensity, (3) epoch, and (4) hours of
sleep. Participants’ pupil-to-iris ratios (PIRs) were computed
based on the user-captured eye images. Given that time of
the day influences a person’s alertness level [14], we also
used time information as a feature by categorizing the time
when participant completed the PVT into one of the following
epochs: midnight (12AM-6AM), morning (6AM-12PM), af-
ternoon (12PM-6PM), and evening (6PM-12AM). It is worth

noting that while we asked participants to self-report their
hours of sleep, there are several existing algorithms that can
automatically infer users’ sleep duration [16, 48].

Data Analysis
Our goal is to model users’ level of alertness using features de-
scribed in the previous section. Median response time (MRT)
is an indicator of alertness that has been widely used [38].
Using MRT enables us to measure and predict the level of
alertness over a continuous spectrum. A higher value of MRT
indicates lower alertness. As a result, we trained a regression
model to predict users’ median response time using support
vector regression (SVR). To evaluate the models’ performance,
we used the following methods: 1) 10-fold cross validation, 2)
leave-one-day-out cross validation, and 3) leave-one-person-
out cross validation and compared the root-mean-square errors
(RMSE) of the predicted MRTs. In addition, two different
feature sets were used during each of the evalutions: the full
feature set (PIR + light + epoch + sleep duration) and the
reduced feature set (PIR + light). The reduced feature set was
included in the evaluation so that we could investigate if our
model would achieve comparable performance using features
that can be collected automatically and without relying on
phone-usage behavior to infer sleep. The intuition behind this
is that information on sleep to some extent could already be
revealed in users’ pupil size [51].

Results
In total, 1,378 images were collected over the course of the
study. The mean and standard deviation of participants’ re-
sponse time and the ambient light intensity are shown in Ta-
ble 1.

Detection of eye, pupil and iris

We first focused on validating our algorithm for eye, pupil, and
iris detection. As described in the section "Data Collection"
the pictures were collected in two ways: i) manually, with the
user pressing a button to take the picture and confirming the
picture quality with an image preview; ii) automatically, by
taking a picture whenever the user unlocked the phone.

First we looked into the precision of each module of the
framework as shown in Figure 1. For this, we manually
checked each image that passed through each step of the
framework. The precision of each phase in our framework
was very high — the precision of eye, iris, and pupil detection
phases are 98.1%, 96.1% and 89.3%, respectively. This
indicates that the implemented framework can effectively
process these images. Furthermore, we also checked to what
extent makeup adversely affects pupil segmentation. Among
240 images where participants had makeup, the algorithm
achieved precision of 94.6%. This high precision might result
from limiting the value of q (�45� ⇠ 45� and 135� ⇠ 225�)
as mentioned in the method section during the line integral.

We also analyzed the precision of our method using the pic-
tures collected when the user unlocked the phone. This time,
however, the results were significantly lower, with the pre-
cision of eye, iris, and pupil detection being 45.1%, 36.6%,
and 10.7%, respectively. Since our method relies on correctly



Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
Mean 392.3 566.9 714.8 526.9 754.7 433.5 282.9 359.9 421.9 358.8 648.9 531.3 363.8 564.8 337.6Response Time

(milliseconds) S.D. 818.8 600.8 1085.1 794.0 990.6 638.0 71.3 175.5 419.4 173.4 841.6 374.9 174.7 435.3 136.4
Mean 33.4 25.1 432.9 28.0 164.1 173.4 65.0 109.0 85.3 276.1 336.5 129.5 29.0 16.2 13.9Ambient Light

(lux) S.D. 66.6 83.7 1607.3 47.2 733.3 1718.2 422.9 533.8 481.8 1989.7 1335.8 478.6 15.7 35.4 60.3
Table 1. Mean and standard deviation of PVT response time and ambient light intensity in StudyI.

identifying the pupil and iris to compute the PIR, we decided
to continue the analysis using only the pictures collected man-
ually.

Person-dependent Model

Our next step was to look at whether we could use an indi-
vidual’s own data to train a model that could predict their
MRT. To this end, we trained a regression model on each in-
dividual’s data using support vector regression (SVR), and
evaluated the prediction performance using 10-fold cross vali-
dation. The mean root-mean-square error (RMSE) of the pre-
dicted MRT was 64.87 milliseconds (Max=138.12, Min=12.77,
S.D.=36.65) and 72.65 milliseconds (Max=148.77, Min=12.06,
S.D.=41.94) for models trained using the full feature set and
the reduced feature set respectively. The results are compara-
ble to the results from a previous study that employed phone
usage as a predictor of response time [5]. This suggests that
pupil information can be used to infer the level of alertness.
More importantly, with pupil information and ambient light
intensity alone, our proposed method are still able to differen-
tiate between different levels of alertness.

In addition, we performed leave-one-day-out cross validation.
Data from different days were iteratively used as test data,
and the data from the remaining days were used as training
data. The mean RMSE of leave-one-day-out cross validation
was 63.72 ms (Max=149.16, Min=12.44, S.D.=39.86) and
66.56 ms (Max=199.11, Min=31.92, S.D.=42.12) for models
trained using the full feature set and the reduced feature set
respectively. The results are consistent with the results of the
models trained on randomly shuffled individual data, which
suggests that pupil size is a time-independent indicator of level
of alertness.

Person-independent Model

Acquiring data from users in order to train personalized model
might cause user burden and not be scalable. To this end,
we trained generalized models using data from multiple users
and evaluated the generalizability of the models. Given n
users, during each iteration, a regression model was trained on
data from n�1 users and tested on data from the remaining
user. The mean RMSE is 105.39 ms (Max=268.72, Min=31.86,
71.80) and 104.91 ms (Max=268.5, Min=31.92, S.D.=71.23)
for models trained using the full feature set and the reduced
feature set respectively.

Discussion
In this study, participants used a smartphone with a front-
facing camera of 1.3MP without the infrared filter, and they
were asked to take pictures of themselves manually using our
app. After taking a picture, each participant had to do a PVT
test to measure their response time. The results of the PVT test
were used as a ground truth, and our goal was to predict the
median response time obtained from the PVT tests using our

pupil-to-iris ratio extraction method, along with other features
collected passively.

The results of the study show that our models can be used
to infer users’ alertness using data collected from the camera
and the light sensor in a smartphone. The mean RMSE of the
predicted personalized model using 10-fold cross validation
was 64.87 ms using 4 features and 72.65 using only 2 features.
The mean RMSE of the generalized model was 105.39 ms
using 4 features and 104.91 ms using 2 features. Both of the
results are comparable to the results from a previous study that
employed phone usage [5] as a predictor of user’s response
time.

Despite the encouraging results of this study, the protocol of
the study still required effort from the user to collect the data.
The data was collected when participants received notifica-
tions, and it required users to take pictures of themselves using
our app. Furthermore, the removal of the IR filter facilitated
the identification of the iris and pupil from the images, but it is
not practical for users to remove the IR filters of their phones
to use our solution. Because of these limitations, we decided
to conduct a second study, in which the data was collected
without the removal of the IR filter and without requiring
any additional action by the participant. The second study is
described in the following section.

STUDY II
In study I, we removed the IR filter and used a manual ap-
proach for picture collection in order to facilitate the detection
of eye, pupil, and iris. However, these changes could be
avoided if the smartphones had cameras with high enough
resolution to make the contours of the eye, pupil, and iris very
pronounced. Therefore, we decided to conduct a second study,
in which participants used smartphones with a front-facing
camera with much higher resolution (13 MP). Furthermore,
in this study a burst of pictures were collected automatically
when users unlocked their phones. By collecting several pic-
tures instead of just one, we increased the chances of obtaining
pictures with better quality.

Participants
In the second study, we followed the same recruiting procedure
as we did in Study I. In total, 10 participants with an age range
from 18 to 22 signed up for this study, and 2 of them dropped
out due to not having enough time to continue the study. In
the end, the rest of participants (4 blue-eyed, 4 brown-eyed)
had an average compliance rate of 78%( S.D. = 34%).

Data Collection
The data collection scheme in Study II was the same as in
Study I. We collected a sleep journal once per day and eye
images, light reading, and PVT six times per day. The only
difference was that in Study II, our app collected facial images



in a completely automatic manner. Participants no longer
needed to manually take pictures of their eyes. Instead, our
app took 30 burst images of their eye (including the time
when participant unlocked the screen to complete PVT). This
increased the chance of capturing good-quality images.

Data Processing
The data processing also follows the same approaches we
used in Study I, except for the computation of PIR values. In
order to eliminate the artifacts caused by bad angles and poor
lighting, we used the median PIR of all the images captured
during each screen-unlock event.

Data Analysis
We employed the same approaches to modeling users’ me-
dian response time. That is, using the full feature set (PIR +
light + epoch + sleep duration) and the reduced feature set
(PIR + light) to train person-dependent models and person-
independent models.

Results
In total, 23,908 pictures were collected over the course of the
study. Out of the 23,908 pictures, iris and pupil were correctly
recognized in 17,206 pictures. The means and standard devia-
tion of participants’ response time and ambient light intensity
are shown in Table 2.

Participant P16 P17 P18 P19 P20 P21 P22 P23
Mean 350.4 323.3 422.6 368.4 426.3 331.6 696.5 310.3Response Time

(milliseconds) S.D. 106.0 141.7 249.4 195.1 353.8 121.1 724.4 98.9
Mean 332.9 775.7 94.0 101.1 62.7 145.6 177.4 97.0Ambient Light

(lux) S.D. 1191.8 1513.1 281.3 174.5 212.2 271.7 819.7 177.8

Table 2. Mean and standard deviation of PVT response time and ambi-

ent light intensity in StudyII.

Person-dependent Model

The person-dependent models achieved a mean RMSE of
36.63 ms (Max=110.8, Min=17.83, S.D.=31.34) and 36.31 ms
(Max=110.79, Min=17.35, S.D.=31.23) with the full feature
set and the reduced feature set respectively, using 10-fold cross
validaton. In the leave-one-day-out cross validation, the mean
RMSE was 43.28 ms (Max=118, Min=17.14, S.D.=40.87) and
44.91 ms (Max=123.94, Min=12.27, S.D.=44.01) for models
trained using the full feature set and the reduced feature set
respectively. The RMSEs are smaller compared to the RMSEs
in Study I, which might be attributed to the fact that the high-
resolution eye images make pupils easier to detect and the
burst images help reduce the effect of bad lighting and angles.

Person-independent Model

The mean RMSE of the person-independent models us-
ing leave-one-person-out cross validation was 66.87 ms
(Max=220.03, Min=21.14, S.D.=63.68) and 61.33 ms
(Max=221.09, Min=18.41, S.D.=65.68) with the full feature
set and the reduced feature set respectively. Similar to what
we found in Study I, the mean RMSE of person-independent
models was higher than person-dependent models as a result
of greater variations in pupillary response across different par-
ticipants. That said, the results from our second study still
suggest that passively captured pupil information and ambient
light intensity can be used to model users’ alertness.

Discussion
In Study II, we addressed some limitations of Study I by
using a smartphone with a high-resolution front-facing camera
(13MP) and by automatically collecting a burst of pictures
whenever participants unlocked their phones. In this way, we
could evaluate if our method could be used in a completely
passive and unobtrusive way.

As in study I, the results of Study II provide evidence that
our method can be used to measure alertness in-the-wild. In
addition, our method proved to be more accurate in this study,
with lower RMSE scores than the ones found in Study I. The
mean RMSE of the predicted MRT using 10-fold cross val-
idation was 36.63 ms using 4 features and 36.31 using only
2 features. The mean RMSE of the generalized model was
66.87 ms using 4 features and 61.33 ms using 2 features.

The fact that the results in Study II were even better than the
results of Study I shows that the two changes introduced in
Study II (high resolution camera and burst of pictures collected
automatically) were effective in increasing the performance of
the models. Furthermore, since it was not necessary to make
any physical changes in the participants’ smartphones, the
results show that the method can be easily deployed, requiring
only the installation of the mobile application by the user.

GENERAL DISCUSSION
Our alertness level fluctuates over time, and it changes based
on several factors, such as circadian rhythms, sleep duration,
and stimulant intake. Previous studies have shown different
methods to assess alertness, including questionnaires, reaction
time test, physiological signals, etc. Recently, researchers
proposed methods that can even allow prediction of cognitive
states in-the-wild by passively collecting data from smart-
phones. In this paper, we presented a complementary solution
called AlertnessScanner, a computer-vision-based system that
models alertness in-the-wild by extracting pupil-to-iris ratio
from pictures taken by smartphones, and combining this with
other features collected passively. It has the benefits of being
unobtrusive as well as not requiring phone use data.

We conducted two in-the-wild studies to evaluate the perfor-
mance of our solution. In both studies, we evaluated personal-
ized and generalized models using either 4 features (PIR, light,
epoch, hours of sleep) or 2 features (PIR, light). Both feature
sets can be collected passively from smartphones. We com-
pared the results of our models to the response time obtained
using a mobile version of PVT. Response time has been widely
used as an indicator of level of alertness [28]. Response time
increases as user’s level of alertness decreases. Our approach
achieved a mean RMSE of 43.28 ms and 66.87 ms for partici-
pants’ median response time with person-depend model and
person-independent model respectively. The results suggest
that AlertnessScanner performs better than the method used in
the previous study focusing on passively measuring alertness
using smartphone usage [5]. As such, our unobtrusive method
can serve as a good alternative means of measuring alertness
in-the-wild, and potentially enables longitudinal monitoring
of alertness in a scalable way.



In the following sections, we discuss how our solution could
be used to understand how alertness changes over time, and
how knowledge of these alertness changes can be used for
real-world interventions.

Understanding Alertness Changes
The fact that AlertnessScanner can be used to measure alert-
ness in-the-wild creates new opportunities for measuring how
alertness changes over time. Although our alertness is con-
stantly changing, we are often not aware of these changes
and how they affect our daily activities. Having a deeper
understanding of our alertness fluctuations may allow us to
understand the factors that lead to alertness dips, or in which
contexts we are most likely to reach a higher level of alertness.
This information can be useful for understand our potential
strengths and limitations. For instance, "early rising" is encour-
aged, and "late rising" is associated with laziness [4]. However,
research shows that although some individuals are more likely
to be alert early in the morning, others may be more alert in
the afternoon or even at night [4]. Being aware of our own
alertness patterns allows us to optimize our activities other
than following the dictates of society.

In this paper, we decided to focus only on features that could
be collected passively from smartphones. In order to have a
greater understanding of our alertness changes and the behav-
ioral and contextual factors that affect them, AlertnessScanner
could be used in conjunction with existing systems that collect
behavioral and environmental data. For example, our method
could extend and complement the system developed by Abdul-
lah et al. [5], which enables the collection of other information
associated with alertness levels.

Acting upon Alertness Changes
Understanding our alertness cycles can help us come up with
long-term solutions for better management of daily activities.
For example, our method can allow better scheduling over the
day depending on an individual’s alertness state and task pri-
orities. Activities that require high alertness, such as writing,
could be scheduled to happen during our peak of alertness,
while moments of low alertness could be used for resting or
for activities that do not require much attention, such as rote
tasks [31]. Furthermore, a system based on AlertnessScanner
could give personalized recommendations, such as changing
sleep habits or avoiding stimulant drinks, in order to manage
our alertness level during the day.

A system based on AlertnessScanner can also play an impor-
tant role in reducing the risk of fatigue related accidents in the
workplace. Fatigue is a serious issue where workplace safety
is concerned. For example, fatigue has been associated with
a 36% increase in serious medical errors [52]. As clinicians
increasingly adopt mobile phones and tablets [40, 43], Alert-
nessScanner can be used to prevent fatigue related accidents
in this domain.

Limitations and Future Work
Although our studies provide evidence that our solution can
effectively measure alertness in-the-wild, both studies have
some limitations.

In Study I, we had to remove the IR filter of the smartphone
cameras used by the participants, which is impractical since it
compromises other pictures that users take with their phones.
Furthermore, in Study I participants had to manually take
pictures of themselves using our app, which requires active
participation from users.

In Study II, we tried to address the limitations of Study I
using front-facing camera with much higher resolution (13MP)
and by collecting a burst of pictures passively when users
unlocked their phones. This method proved to be unobtrusive,
since it did not prompt users for any additional action for data
collection. Although the results were better than the ones
found in Study I, we acknowledge that currently there are few
smartphones on the market with a front-facing camera with
the same or better resolution than the one we used. However,
as the cameras of smartphones keep improving, we believe
that most smartphones will reach this standard eventually.

Another limitation of our work is that although AlertnessScan-
ner takes ambient light into consideration, there is still work to
be done to handle very dark or very bright lighting conditions.
The quality of images taken in the dark environment can be
quite poor. For these images, the segmentation of the iris and
pupil is computationally difficult. We can address this issue
by augmenting image capture with an additional infrared light
source. Since infrared light is invisible, it will not interrupt
the work flow of the user and hence would not add to user
burden. Moreover, as more and more commercial smartphones
are equipped with infrared emitters and infrared cameras for
identity authentication, it could help circumvent the challenge
of extreme lighting conditions. Environments with very bright
light pose similar challenges in terms of accuracy. Under such
conditions, the pupil size mostly depends on the brightness of
light. However, the embedded light sensors in smartphones
can be used to filter out such cases. Moreover, there is recent
work in modeling the relationship between light exposure and
pupil size [49], which may be applicable to this problem. In fu-
ture work, we plan to take these models into consideration for
better accuracy in bright environments. Apart from extreme
lighting conditions, for users who wear eyeglasses, the glare
on the eyeglasses also affects the iris and pupil recognition rate
in our algorithm. This challenge can be potentially addressed
using reflection removal algorithm proposed by Shih et al [44].

In addition, pupil size can also change due to a number of
reasons other than alertness states including age [53] and mind-
wandering (lost in thoughts) [13] for instance. In our studies,
the participants had relatively limited age range. In order to
factor in the influence of age, it will be useful to collect and
compare data from study population with more diverse age
range. And to differentiate mind-wandering from declined
alertness, future work should incorporate additional sources of
contextual information. For example, blinking and eye gaze
[30, 42] as well as patterns of phone use [5] can complement
the outcomes of our proposed pupil based algorithms.

Finally, since our system uses facial images to infer alertness,
there are some potential privacy concerns. However, it should
be noted that our framework does not necessarily need to store
images for inferring alertness. Currently, our system computes



the PIR offline, but the system can be modified to calculate
the PIR from a captured image on-the-fly. Therefore, it is
possible to implement the whole data collection process, image
capturing, face detection, pupil detection, and PIR calculation
within the phone. This would address privacy issues related to
facial image capturing.

CONCLUSION
Reduced alertness has adverse effects on our attention, pro-
ductivity, and even our safety. As such, being able to monitor
alertness continuously can have significant impacts across
a number of domains. Toward this goal, we developed
AlertnessScanner, a computer-vision-based system that allows
modeling alertness by extracting pupil-to-iris ratio from pic-
tures taken by smartphones, and combining with other features
collected passively. Based on results from two in-the-wild
studies, we found that our system is accurate in assessing
alertness states, and it can be used to replace methods that are
inconvenient to use in-the-wild, such as PVT. Our developed
method is a significant step toward granular and continuous
assessment of alertness across a large population and over a
long period of time. Furthermore, our findings have broader
implications for a wide range of applications that can act upon
our alertness state.
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