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Abstract
Early detection of dementia is critical for effective symptom
management. Recent studies have aimed to develop machine
learning (ML) models to identify dementia onset and severity
using language and speech features. However, existing meth-
ods can lead to serious privacy concerns due to sensitive data
collected from a vulnerable population. In this work, we aim to
establish the privacy-accuracy tradeoff benchmark for dementia
classification models using audio and speech features. Specifi-
cally, we explore the effects of differential privacy (DP) on the
training phase of the audio model. We then compare the clas-
sification accuracy of DP and non-DP models using a publicly
available dataset. The resultant comparison provides useful in-
sights to make informed decisions about the need for balancing
privacy and accuracy tradeoff for dementia classification tasks.
Our findings have implications for real-world deployment of
ML models to support early detection and effective manage-
ment of dementia.
Index Terms: speech classification, dementia, differential pri-
vacy

1. Introduction
Dementia is a chronic neurodegenerative disorder that leads to
cognitive and functional decline [1], including memory loss,
cognitive impairment, and worsening communication and lan-
guage skills. More than 55 million individuals worldwide have
dementia, with nearly 10 million new cases diagnosed annu-
ally [1]. It is currently the seventh leading cause of mortality
among all illnesses and one of the significant causes of impair-
ment and reliance among the elderly [1]. There is currently no
cure for dementia. Early detection of dementia is, thus, critical
for effective symptom management and delaying cognitive and
functional decline [2].

Currently, dementia detection uses different assessment
methods, including cognitive assessments (e.g., Mini-Mental
State Examination — MMSE [3]), self-report questionnaires,
and neuroimaging (e.g., Positron Emission Tomography — PET
[4]). However, these diagnosis methods can be infrequent and
time-consuming [5], which can hinder the early detection of de-
mentia. Furthermore, the lack of accessible methods can be par-
ticularly problematic for individuals living in remote locations.
As such, there is an urgent need to develop methods that can get
deployed at scale without burdening individuals.

Research shows that speech or language usage changes can
indicate an early sign of cognitive decline [6]. Recent studies
have leveraged language and speech characteristics to develop
novel machine learning-based approaches to identify dementia
onset [7, 8, 9, 10, 11, 12]. The AAAI 2022 hackallenge focused
on developing methods to identify dementia and mild cogni-

tive impairment using two public datasets including the Pitts-
burgh (Pitt) corpus [13, 14] and the Wisconsin Longitudinal
Study (WLS) corpus [15]. The winning team [16] developed an
ensemble called ACOUSTICS using a multimodal speech and
text combination. They converted audio data to log mel spectro-
grams, which allowed them to exploit Spatiotemporal structures
and relations in the speech data.They achieved an accuracy of
94.2% for the datasets.

While these methods show early promises, privacy remains
a serious concern. For example, the spectrogram-based fea-
tures can potentially be used to reconstruct speech content
[17, 18, 19, 20]. Specifically, it is critical to assess and address
the resultant privacy concerns given the data is collected from a
vulnerable population. However, there has not been much work
yet focusing on how to balance the privacy and accuracy trade-
off for these models. This paper aims to address this gap by
exploring. differential privacy (DP) for deep learning (DL) clas-
sification. Specifically, we will compare how the results vary if
we use a privacy-preserving methodology (DP + DL + spectro-
grams) versus state-of-the-art (DL + spectrograms) models.

The core principle of Differential Privacy is that model
training can be achieved by accessing the gradients of the loss
concerning each parameter. If this access preserves the differ-
ential privacy of the training data, the resulting model does too,
according to the post-processing property of differential pri-
vacy. By incorporating noise into the optimizer that examines
parameter gradients, the complexity can be concealed. While
prior work has explored DP-SGD and similar privacy-accuracy
tradeoffs, this study presents two novel contributions: i) demon-
strating the feasibility of using DP-SGD for dementia classifica-
tion with speech data; and ii) investigating the privacy-accuracy
benchmark for dementia onset and severity prediction. The fo-
cus of this work is to apply Differential Privacy (DP) to un-
derstand its impact on performance and the privacy-accuracy
tradeoff.

2. Differential Privacy
Differential Privacy (DP) is a mathematical theory that provides
guarantees for the privacy of user information [21]. The goal
of DP is to minimize the impact of any individual’s data on
the general outcome so that the same conclusions can be drawn
regardless of whether or not an individual’s data was included
in the analysis’s input. DP provides privacy guarantees resistant
to a wide range of privacy attacks as data evaluations grow.

In this work, we use the differentially private stochastic gra-
dient descent (DP-SGD) based on prior works [22, 23, 24]. In
this paper, we focus on applying the DP-SGD method to the
problem of speech data classification and exploring the effects
of DP on the classification accuracy, which has not been thor-
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oughly investigated in previous literature. Typically, the SGD
optimizer trains iteratively. A small number of training exam-
ples (a.k.a “minibatch”) are sampled from the training data at
every iteration. The optimizer then computes the average model
error on these examples and differentiates this average error
concerning each model parameter to obtain a gradient vector.
The final step involves updating the model parameters (θt) by
subtracting this gradient (∇t) multiplied by the learning rate
(η). Mainly, two modifications are performed in DP-SGD to
obtain differential privacy:

1. Gradients are computed per sample (rather than averaging
over samples) and are clipped to control the sensitivity.

2. Spherical Gaussian noise bt is added to their sum to obtain
the indistinguishability needed for DP.

The update step can be written as follows:

θt+1 ← θt − η · (∇t + bt) (1)

The proposed approach is seen in Fig. 1.

3. Related Work
In recent years, there has been some significant progress in de-
veloping machine learning models for assessing dementia onset
using audio and text features [7, 8, 9, 10, 11, 12].

Luz et al. [25] developed the ADReSS challenge dataset
to support standardized model development and evaluation fo-
cusing on dementia assessment. Some works have used this
dataset recently [26, 27]. The application of differential privacy
has gained a lot of interest in recent years as a way to ensure that
sensitive data is protected while still being useful for analysis.
Abadi et al. [24] investigated the privacy-utility tradeoff in deep
learning, using differentially private stochastic gradient descent
to train deep neural networks on MNIST and CIFAR-10. They
found that the level of privacy protection provided by differen-
tial privacy can be increased by increasing the magnitude of the
noise added to the data, but at the cost of decreased accuracy.

Fletcher et al. [28] provide a detailed overview of differen-
tial privacy techniques in decision tree classification, focusing
on the use of Laplace noise as a privacy mechanism and explor-
ing the effect of different epsilon values on privacy and accu-
racy. Epsilon (ϵ) is a privacy parameter in differential privacy
that controls the strength of privacy guarantees provided by the
model. We explain more in section 5 They noted that smaller
epsilon values could lead to higher privacy but lower accuracy,
while larger epsilon values could result in higher accuracy but
lower privacy. Fan et al. [29] investigated the use of local differ-
ential privacy in data centers, specifically in privacy-preserving
classification tasks. They evaluated the impact of different ep-
silon values on classification accuracy and find that increasing
epsilon values could improve accuracy but at the cost of reduced
privacy. Ha et al. [30] provided a comprehensive overview of
differential privacy techniques in deep learning, including var-
ious methods of injecting noise to safeguard privacy, such as
using Gaussian noise. They also examined the effect of dif-
ferent epsilon values on model privacy and accuracy, revealing
that increasing epsilon values could lead to a reduction in model
privacy while improving accuracy. Zhao et al. [31] conducted
a survey of differential privacy techniques for unstructured data
content, such as text and multimedia data. They discussed the
use of differential privacy in various applications, including data
analysis and machine learning, and examine the effect of dif-
ferent privacy parameters, such as delta and sigma, on privacy
and accuracy. They found that smaller delta values could result

in higher privacy but lower accuracy, while larger delta values
could lead to higher accuracy but lower privacy. Finally, Yang et
al. [32] proposed a privacy-preserving spoken command clas-
sification framework using differential privacy and adversarial
autoencoders. They evaluated the effect of different epsilon val-
ues on privacy and accuracy and compare their framework with
other differential privacy approaches. Their results show that
increasing epsilon values could improve classification accuracy
but at the expense of reduced privacy.

Overall, selecting specific values for privacy parameters
such as epsilon, delta, sigma, and alpha depend on the context
of the application, the desired level of privacy protection, and
the tradeoff between privacy and accuracy. Privacy parameters
can be adjusted to control the strength of privacy guarantees
provided by the model, while other parameters can be used to
find the balance between privacy and accuracy that best suits
the application at hand.

In this work, we build on these studies and investigate the
privacy-accuracy tradeoff in the context of speech data classifi-
cation for dementia detection. We propose a novel approach
to classify speech data and explore the effects of DP on the
accuracy of the classification results. Our aim is to estab-
lish a privacy-accuracy benchmark for this specific use case
and provide insights for developing practical AI-based analy-
sis pipelines for identifying dementia and related applications.

In summary, our work contributes to the growing body of
research on machine learning for dementia detection, with a par-
ticular focus on the privacy-accuracy tradeoff in the context of
differential privacy. We think that our study provides valuable
insights into developing accurate and privacy-preserving mod-
els for dementia detection and related healthcare applications.

4. Materials and Methods
4.1. Dataset: DementiaBank Pitt and WLS Corpora

Tradeoffs between privacy and accuracy in DP are well-known
to be dependent on the dataset and models. We have tackled this
in this work through the use of two different datasets: The Pitt
and WLS corpora. The dataset consists of participants’ demo-
graphic information, including diagnostic data (e.g., MMSE)
and audio recordings. The audio comprises of participants
conducting the “Cookie Theft” task of the Boston Diagnostic
Aphasia Exam [33], in which they were asked to describe
everything they saw occurring in the picture. For decades, the
”Cookie Theft” task has been used to identify pragmatic mark-
ers of diseases with recurrent cognitive-linguistic impairments
such as dementia [34, 35, 36]. Metadata from both datasets
provide diagnostic information (e.g., diagnostic code, MMSE
score, and fluency score).

4.2. Data Pre-processing

For the Pitt corpus labeling, we utilized the Mini-Mental State
Examination (MMSE) [3] to differentiate between healthy con-
trols and individuals with dementia. This approach was chosen
for two reasons. Firstly, MMSE is a well-established clinical
measure of cognitive function for various populations [37]. Sec-
ondly, the MMSE variable had fewer missing values than other
variables in the dataset. The threshold of 24 for MMSE was
chosen based on previous research demonstrating its effective-
ness in distinguishing between different cognitive states [16].

The corpus initially contained 292 participants with 552
audio recordings. As some participants’ cognitive functions
may change over time, we labeled their audio recordings in-
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stead of the participants themselves. We removed 93 of 552
audio files with missing MMSE scores, resulting in 242 audio
files for healthy controls and 217 for individuals with dementia.
We randomly selected 323 audio files (152 dementia and 171
non-dementia) from the Pitt corpus as the training set, while the
remaining 136 audio files (65 dementia and 71 non-dementia)
were used as the test set. For the WLS corpus labeling, we
used verbal fluency to distinguish between healthy controls and
individuals with dementia, following a similar approach as in
previous work [38]. Participants completed two verbal fluency
cognitive tests, naming as many items in a specified category
(animals and food in this case) as possible within 1 minute. Re-
search suggests that verbal fluency tests can effectively manifest
dementia in clinical settings [39]. To account for age-related
declines in fluency, we used progressively decreased cutoff flu-
ency scores for participants of higher age, with cutoffs of 16,
14, and 12 for participants aged less than 60, between 60-79,
and over 79, respectively. Using this approach, we identified 23
participants with dementia and 93 healthy controls in the WLS
corpus. We used the same train-test split approach for the Pitt
corpus, resulting in 79 participants (16 dementia and 63 non-
dementia) in the training set, and 37 participants (7 dementia
and 30 non-dementia) in the test set.

4.3. Feature Extraction

To preprocess the audio, we first converted the file format from
mp3 to wav. The audio data was then downsampled from 44.1
kHz to 16 kHz, which is within the range of human speech (0-8
kHz) and reduces the file size while preserving valuable infor-
mation. We used the provided timestamp data (i.e., participant
start-stop times in .cha files) to trim the corresponding audio
files, retaining only the participant’s speech information. Fi-
nally, we extracted log-mel spectrogram features using overlap-
ping windows with a duration of 1-second [40].

5. Speech Model
5.1. Non-Differentially Private Model

In this work, we use the ResNet-18 model to classify partici-
pants based on speech using log-mel spectrogram features. We
make use of the Stochastic Gradient Descent (SGD) optimizer.
We use a five-fold cross-validation setup for the experiments
and the resultant model has an average accuracy of 94.2% (S.D
2.8%), the equal error rate is 0.32, and the AUC score is 0.918.

5.2. Differentially Private Model

The same experiment with spectrograms was conducted using
the ResNet-18 architecture for the differential private case. The
main difference is using the DP-SGD optimizer instead of the
SGD optimizer. We focus on a few hyperparameters for per-
forming the experiments as described below in more detail.

A privacy library within PyTorch called Opacus has been
used for the experiments. In this work, we focus on three spe-
cific parameters:

1. Delta (δ): The target δ of the (ϵ,δ)-differential privacy guar-
antee. Generally, it is set to be less than the inverse of the size
of the training dataset. In this work, δ is 3e-4.

2. Epsilon (ϵ): The maximum distance between a query on
dataset I/P and the same query on dataset I/P minus ‘X’ sam-
ples. It is a metric of privacy loss at a differential change
in data (i.e., adding or removing one entry). Epsilon is also
known as the privacy parameter or the privacy budget. Moti-

Figure 1: The Differential Privacy methodology used in this
work selects minibatches from the training data, clips the cal-
culated gradients and adds gaussian noise. This is repeated for
the duration of the training phase.

Table 1: Accuracy for varying values of ϵ and C with constant δ.
As ϵ increases, accuracy is observed to improve. Bold numbers
show the best performance per ϵ row.

↓ϵ\C→ C= 0.1 C= 0.5 C= 1 C= 5 C= 10

ϵ = 0.1 45.94 45.35 42.83 44.58 45.34
ϵ = 0.5 46.26 47.38 46.72 45.95 46.21
ϵ = 1 48.29 51.5 48.62 51.48 48.75
ϵ = 5 58.98 57.73 53.41 57.72 55.19
ϵ = 10 60.28 59.72 60.32 59.71 59.46
ϵ = 50 65.87 66.44 67.46 64.54 65.89
ϵ = 100 67.03 69.25 68.78 68.46 68.92

vating on prior work [41], we set out to explore the effect of
ϵ and on applying it in practice. In this work, we have chosen
the following values of epsilon: [0.1, 0.5, 1, 5, 10, 50, 100].
When ϵ→∞, we have a non-differentially private case.

3. Max Grad Norm (C): The maximum L2 norm of per-sample
gradients before the averaging step aggregates them. We have
chosen the following values: [0.1, 0.5, 1, 5, 10].

Sigma (σ) is a privacy parameter that controls the amount
of noise added to the function being computed in DP. It is calcu-
lated based on the desired level of privacy (ϵ), the desired level
of confidence (δ), and the sensitivity of the function being com-
puted. The sensitivity is the maximum amount the output can
change when a single input is added or removed. σ is defined as
the ratio of the sensitivity to ϵ. Another Python script was writ-
ten to obtain the mean and standard deviation of the dataset.
The values are computed with a modest privacy budget. See
Section 8 for the code. Based on the above hyperparameter val-
ues, we perform a grid search for the best value pair for a fixed
delta value of 3e-4 (set as per the dataset size). The results for
different values of ϵ and C for a fixed δ are tabulated in Table 1.

5.3. Model Evaluation

For the audio features, we considered all the spectrogram im-
ages of a given subject ID, performed a prediction, and obtained
a list of predictions for each image — dementia (1) or healthy
control (0).
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Table 2: ϵ v/s σ values for the experiments

ϵ 0.1 0.5 1 5 10 50 100
σ 130 10.78 16.25 2.22 1.37 0.77 0.37

ϵ*σ 13 5.39 16.25 11.1 13.7 38.5 37.2

Figure 2: Privacy-Accuracy Tradeoff in Dementia Prediction
using DP-SGD: Investigating Hyperparameter Impact on Com-
bined WLS and Pitt Corpus Datasets

6. Discussion
Table 1 and Fig. 2 show that the accuracy increases as we in-
crease the privacy budget ϵ. As ϵ→∞, we have a non-DP case
where the accuracy→ 94.2%. It is, thus, a case of how much
of a privacy budget one is willing to allocate for a given task.
The table shows the accuracy of a binary classification system
for different values of the parameters ϵ and C, where ϵ controls
the trade-off between accuracy and privacy, and C controls the
regularization of the classification model. The table suggests
that the value of ϵ has a significant effect on the accuracy of the
system, while the effect of C is less pronounced. At ϵ = 100,
the accuracy ≈ 70%. The results also suggest that the privacy-
accuracy tradeoff may vary depending on the dataset and model
used. This highlights the importance of evaluating the trade-
off for each case and selecting the best hyperparameters for
that specific scenario. Examining the upward trend between
ϵ v/s σ in Table 2 leads to the hypothesis: “Increasing θ, the
Privacy-Noise Coupling Factor (product of ϵ and σ), may yield
higher utility in DP mechanisms.” Investigating this necessitates
context-specific analysis of utility-privacy trade-offs and metric
evaluation for ϵ (privacy loss) and σ (noise intensity) pairs.

Even though the current method of using DP-SGD for
different privacy budgets shows a significant difference in
accuracy compared to the non-DP method, there is much
scope for future work. Differential Privacy has already been
used to protect the data of millions of Americans [42]. While
the relationship between privacy and accuracy in differential
privacy is well understood, the optimal value of the privacy
budget remains a matter of ongoing debate. In this discussion,
we examine the implications of varying privacy budgets on the
accuracy and privacy of data analysis. One valuable insight
is that accurate data analysis and privacy protections are not
necessarily mutually exclusive. By carefully designing data
analysis systems incorporating privacy-preserving techniques,
one can balance the need for accurate analysis with privacy

protection. This can help to build trust between researchers
and subjects and may encourage more people with dementia to
participate in research studies.

A recent work examined the use of different epsilon val-
ues (privacy parameters) across different organizational projects
and how it affected privacy [43]. It is interesting to note that
privacy parameters used in different organizations are either in-
complete or not specified, making it challenging to assess the
effectiveness of privacy-preserving measures. In some cases,
the privacy unit needs to be specified, which makes it difficult
to determine how individual users’ data is being protected. Fur-
thermore, some of the privacy parameters used may need to pro-
vide more protection for user privacy, given the sensitivity of the
data being collected. Research has indicated that data privacy is
at risk when ϵ exceeds 1 [24]. News reports have suggested that
certain widely-used tech services have epsilon values of 6 and
14, respectively [44, 45]. If a user were to upload medical data,
an analyst could determine whether the individual had a particu-
lar condition with 50% certainty after just one upload and with
virtual certainty after two days of uploads. Similarly, in this
work, ϵ = 1 still gave us a 51.5% chance of inferring sensitive
information, which, when queried multiple times a day, would
compromise user privacy. It is, thus, important to carefully con-
sider the implementation of differential privacy to ensure that
user data is protected while still providing valuable insights.

One potential approach to balancing privacy and accuracy
could be to use a dynamic privacy budget, which adapts to the
sensitivity of the data being analyzed. Similarly, combining dif-
ferential privacy in conjunction with other privacy-enhancing
techniques, such as data masking or homomorphic encryption,
could be considered. By combining multiple privacy-enhancing
techniques, a better trade-off may be possible. Finally, the
choice of privacy budget is not solely dependent on the specific
task. Other factors, such as legal and regulatory requirements,
may influence the choice of privacy budget.

7. Conclusion
In this paper, we compared differentially private (DP) and non-
differentially private (non-DP) methods to classify subjects with
dementia and healthy controls using spectrogram images. Our
results showed that as the privacy budget increased, the accu-
racy tended towards the non-DP value, highlighting the need
to balance data privacy and accurate analysis. Our study con-
tributes to the growing research on machine learning for de-
mentia detection, demonstrating the effectiveness of differential
privacy in preserving sensitive personal information. With care-
ful optimization, differential privacy provides a practical solu-
tion for privacy-preserving dementia classification using speech
data. Our work has important implications for healthcare, stim-
ulating further research into privacy-accuracy tradeoffs and new
ideas for balancing privacy and accuracy in machine learning.

8. Data and Code
1. Data can be requested from DementiaBank [13]
2. Code: https://github.com/suhasbn/SpeechDP
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