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Abstract
Cognitive assistants use vocal interfaces and artificial intelligence to assist humans with complex tasks. While much research 
has focused on the application of these devices, a few studies have addressed how these devices affect the way humans 
work. To fill this gap, this research studied the effects of a cognitive assistant on mental workload, frustration, and effort. 
Participants worked with a Wizard-of-Oz style assistant and completed the Wisconsin Card-Sorting Task and engaged in a 
peripheral-detection task in a two-sample study that compared participants (n = 21) who worked with the assistant to those 
who did not. Follow-up interviews were also completed. Results suggest that onboarding techniques, such as tutorials, are 
important for developing analogical trust before regular use. Additionally, results suggest that keeping the mental model of 
the CA clear, simple, and intuitive is important to reduce the mental effort that is required to account for the CA and interac-
tions with it while working. Cognitive assistants offer a broad range of advantages but also have distinct challenges for users: 
primarily the lack of physical affordances that can be linked to functionality.
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Introduction

Natural conversation through verbal and written language 
is becoming a common medium through which humans 
communicate with computers. Smart-speakers and chatbots 
already use natural language interfaces (NLI), and smart-
speakers alone are present in 20% of households with Wi-Fi 

in the United States [1]. As these technologies progress, they 
will be able to support users during increasingly complex 
tasks using natural dialog, by helping users express their 
problems in a way that is compatible with technology, even 
with a limited user knowledge of the device [2]. The capa-
bilities of cognitive assistants (technologies that combine 
NLIs and artificial intelligence, abbreviated CA) range from 
question–answer systems [3] to assisting in the design of 
Earth-orbiting satellites [4]. However, while more tradi-
tional physical tools require clear physical resources that 
the user can evaluate (e.g., lifting capacity, grip strength, 
etc.), CAs require mental resources that may be less clear 
to users and designers. Without a clear understanding of the 
HCI (human–computer interaction) fundamentals of CAs, 
it is impossible to identify which factors which factors may 
increase or decrease the mental effort required to engage 
with a CA. The objective of the current work was to provide 
fundamental information about how CAs affect human work 
through a generalizable task, providing insights that may 
guide designers to develop CAs with fewer obstacles for use, 
such as trust issues and mental overload. Specifically, this 
work addresses the research question what mental challenges 
do users of CAs face and how do they affect the user.
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Related Work

The research in this paper spans a variety of topics from 
human–robot interaction (HRI) to social factors. First, we 
discuss relevant work from the HRI community and situate 
this work within the larger context of the field. HRI encap-
sulates the intersection of two components of this work: 
technology and social factors. In the following section, 
we discuss CA and mental workload in relation to existing 
work on HRI technology and social factors.

Human–Robot Interaction (HRI)

As robots continue to develop and become increasingly 
autonomous, their roles have transitioned from being 
operated on to working collaboratively and interactively 
with humans. This will require a new understanding of 
human–robot social factors, such as mental workload, 
emotional responses, and trust in a variety of contexts. 
For example, Visser and Parasuraman [5] studied static 
automation (robots that support humans continually) 
and adaptive automation (robots that support humans in 
critical situations). They found that adaptive automation 
improved participant’s self-confidence, trust, and mental 
workload [5].

Mental workload is an important social characteristic, 
because it is strongly linked with performance [6–10]. 
Mental workload is defined as the cognitive cost required 
to achieve a certain degree of performance [11]. Measur-
ing and tracking mental workload are a consistent chal-
lenge in HRI. Mental workload can be measured through 
self-report surveys, such as the human–robot interaction 
workload measure [12], or through psychophysiological 
responses, such as mean respiratory rate, respiratory rate 
variability, skin temperature [13], and eye tracking [14]. 
Transparency (i.e., the ability of the user to perceive the 
autonomous agent’s abilities and develop an accurate 
mental model) has been linked to mental workload and 
situational awareness [15]. A mental model allows users 
to explain and predict the physical system they represent 
[16]. The properties of an object that define its possible 
uses are known as affordances. Technology with less 
physical components (e.g., smart-speakers) lacks physical 
affordances that help users generate mental models. Chen 
et al. found that increasing the transparency of UAV’s 
autonomous capabilities significantly decreased subject’s 
mental workload and increased situational awareness [15]. 
Additionally, accounting for the emotional state of the 
user can also lead to decreased mental workload in high-
stress scenarios where collaboration with robots is crucial, 
such as rescue workers [17]. Affective (i.e., emotionally 

sensitive) robot functions can substantially enhance effi-
ciency and effectiveness of cognitive workload through 
three core functions [17]:

1. Sliding autonomy: incorporates all intermediate levels 
of autonomy between tele-operation and full autonomy

2. Affective communication: the ability to recognize and 
understand utterances and affect, and have the ability to 
express them

3. Adaptive attitude: adaptation of the interaction to both 
the affective state of the user, and to the social relation 
between robot and user.

Accounting for the emotions of the user can also improve 
autonomous agents in areas other than mental workload. For 
example, emotion-sensitive natural language recognition 
has been shown to improve accuracy, which is important in 
high-stress situations, such as minimally invasive surgery 
controlled through natural language interfaces [18]. Moreo-
ver, robots expressing emotions and attention have improved 
social responses from participants [19].

Another social factor, trust, is an important factor in tech-
nology adoption [20]. Trust is defined as “the firm belief in 
the competence of an entity to act dependably, securely, and 
reliably within a specified context” [21]. The Human–Robot 
Interaction Trust Scale is the most common survey met-
ric for measuring trust in HRI [22]. However, to properly 
measure dynamic trust (i.e., trust that changes over time), 
researchers must first determine which aspects of trust they 
are investigating and what type of trust. A literature review 
from Colquitt et al. distinguishes trustworthiness (the ability, 
benevolence, and integrity of a trustee) and trust propensity 
(a dispositional willingness to rely on others) from trust (the 
intention to accept vulnerability to a trustee based on posi-
tive expectations of his or her actions) [23]. In addition, Tan 
et al. split trust into dispositional (trust in other persons or 
machines upon initially encountering them, even if no inter-
action has yet taken place) and history-based trust (founded 
on interactions between the person and another person or 
machine) [24]. Finally, Lee and See define the characteris-
tics that influence trust: analytic, analogical, and affective 
processes [25]. Analytical processes build trust through 
communicated knowledge, such as performance statistics. 
Analogical processes build trust through experience. Perfor-
mance has been found to be the greatest influence of trust in 
analogical processes [26, 27]. The affective process builds 
trust through emotional connection.

Team dynamics also change as robots become team 
members as opposed to tools [28–30]. Successful team 
collaboration needs to consider how human–robot and 
robot–robot interactions affect team dynamics. For exam-
ple, Tan et al. found that covert information exchanges 
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between robots in a human–robot team were less desir-
able than sharing information aloud [28]. Additionally, 
Luria et al. found that participants prefer agents that re-
embody (move their social presence from body to body) 
rather than co-embody (move their social presence into a 
body that already contains another) [29]. Finally, shared 
cognition, or a shared understanding of the mental model 
between teammates,” has been shown to be critical in 
effective human–robot collaboration [30].

Cognitive Assistants

Le and Watschinski define CAs as devices that “offer 
computational capabilities typically based on Natural 
Language Processing, Machine Learning, as well as rea-
soning chains operating on large amounts of data, ena-
bling them to assist humans in cognitive processes” (p. 
45) [31]. CAs enhance human capabilities, instead of 
replacing them. This is an important property that dif-
ferentiates them from automation. The primary focus of 
research in this area has been on individual use-cases. 
For instance, StuA [3] and Duke [32] provide solutions 
in education. ADVICE [33] supports online e-commerce. 
A variety of CAs focus on aiding in the design process 
[34–37] and many CAs concentrate on medical applica-
tions [38–41]; for example, a personal health manage-
ment that helps record observations in a self-care set-
ting. Finally, CAs with specific functionality that span all 
fields are being developed, such as automated facilitators 
for virtual meetings [42, 43] and social networks [44].

While these studies provide insights about the utility of 
CAs for tasks and environments, understanding the HCI 
principles associated with CAs more broadly is under-
studied in comparison. This is problematic, because with-
out this foundational knowledge to guide the field, stand-
ards and regulations cannot be developed knowledgably. 
These guidelines are especially important when it comes 
to the protection of vulnerable populations (i.e., people 
who are at risk of poor physical, psychological, and/or 
social health) [45]. NavCog, for example, is a CA that 
acts as a navigational aid to people with visual impair-
ments [46].

Recent research within the HCI community has begun 
to address this gap through the development of standards 
to inform the design of CAs. Wolters et al. established 
guidelines for spoken dialog systems through the study 
of dementia patients [47]. Saad et  al. formed metrics 
for measuring the “quality of experience” of CAs [48]. 
Finally, Tokadl developed design requirements for CAs 
used in space missions [49]. This research is informative, 
but nascent—more work is needed to understand the fun-
damentals of human and CA interactions.

Mental Workload and CAs

Mental workload is defined as the cognitive cost required to 
achieve a certain degree of performance [11]. Early theories 
proposed that humans draw upon a single undifferentiated 
pool of cognitive resources [50], while more recent theories 
proposed different mental resources for different types of 
tasks, known as the multiple resources model [51]. Men-
tal workload is commonly measured through surveys and 
questionnaires such as the National Aeronautics and Space 
Administration Task Load Index (NASA-TLX) used in this 
study [11]. While there are many common mental work-
load questionnaires [52–56], the NASA TLX was selected, 
because it is a well-established instrument in engineering 
design research [57–59] and has been used in similar studies 
[60–63]. Additionally, mental workload can be measured via 
peripheral-detection tasks (PDT) [64–66]. PDTs typically 
require participants to respond to stimuli in a secondary task; 
the speed and accuracy of the response correspond to the 
mental workload of the participant [65]. Theoretically, as 
the mental workload of the primary task increases, research-
ers expect to see decreases in the speed and accuracy of 
responses on a secondary peripheral task.

A significant body of work has focused on the utility 
of CAs in automotive and aeronautics applications due to 
the link between mental workload and safety [6–10]. By 
decreasing the mental resources required for auxiliary 
tasks, such as monitoring vehicle gages, while driving/fly-
ing, more attention can be paid to the primary driving/flying 
task. Additionally, mental workload has been tied to per-
formance [6–10]. For example, Svensson et al. found that 
airplane pilots’ mental workload affected performance and 
information handling in 72 simulated low-level high-speed 
emissions [67]. Additionally, Lemoine et al. found decreased 
mental workload of air traffic controllers through collabora-
tion with a CA [68]. Finally, in a similar study to the work 
presented in this paper, Kalnikaitė et al. tested the effect 
of a note-taking CA on mental workload and found that it 
improved recall although users found it more cognitively 
demanding [63].

In sum, HRI has demonstrated the importance of under-
standing different social and mental factors, such as trust, 
emotional response, and mental workload. CAs have the 
potential to be a revolutionary tool to enable humans, but 
are currently lacking research in HCI. This study aims to 
address this gap by investigating social and mental factors 
when using a CA through a generalizable task. The remain-
der of the paper is organized as follows: “Methods” section 
describes the methods and experimental design. “Results” 
section describes the analysis and results. “Discussion” sec-
tion provides a discussion of the results. Finally, “Conclu-
sion” section summarizes the findings and examines future 
work and limitations.
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Methods

The current work aims to draw broader conclusions by inves-
tigating a generic task with follow-up interviews aimed at 
understanding how the CA affected users’ mental workload 
among other cognitive factors. The Wisconsin Card-Sorting 
Task (WCST) [69] was selected as the generic task, because 
it is commonly used as a standard task for inducing mental 
strain, and has been employed in studies measuring differ-
ences in cognition that result from age [70, 71], diseases 
[72–74], and even alcohol consumption [75]. The com-
bination of the NASA-TLX and peripheral-detection task 
(described in “Secondary speed and accuracy task (SSAT)” 
section) provides both, subjective and objective data, respec-
tively. We also completed interviews to collect qualitative 
data on the participant’s perception of the challenges faced 
during the primary task. The mixed methods used in this 
study aim to establish a complete picture of the phenomena 
investigated.

Study Design

Twenty-one participants took part in this study. All partici-
pants completed the Wisconsin Card-Sorting Task as their 
primary task, which was laid in front of them on a table. To 
measure mental workload, all participants also completed 
a Secondary Speed and Accuracy Test (SSAT) on the lap-
top next to them (a form of PDT). Participants were split 
into two conditions that modified how they completed the 

primary task. Ten participants were assigned to the control 
condition and completed the primary task without additional 
assistance. Eleven participants were assigned to the experi-
mental condition and completed the task while working with 
a Wizard-of-Oz CA.

This CA was produced and manipulated using a Wizard-
of-Oz prototyping technique, meaning that the researchers 
observed the participants from an adjacent room and manu-
ally controlled the CA to appear as if it was able to under-
stand and communicate with the participants. Afterward 
completing the primary task, participants were given the 
NASA TLX to complete, as an additional measurement of 
mental workload. The NASA TLX is composed of six ques-
tions that query the user’s perception of their mental, physi-
cal, and temporal demands, performance, and frustration.

Equipment and Facilities

The experiment was conducted in two connected rooms, 
the Observation Room and Experimental room (shown in 
Fig. 1). There was a one-way mirror between the two rooms 
which allowed the researchers in the Observation Room to 
directly observe participants in the Experimental Room. In 
the Experimental Room, there were several things placed on 
the table (displayed as gray rectangle), including the CA, a 
Bluetooth speaker, a laptop, and the Wisconsin Card-Sorting 
cards. In the Observation room, there was an experimenter’s 
laptop to run the CA. Due to the sound insulation between 
the two rooms, an audio feed was established via two cellular 
devices, connected between the two rooms.

Fig. 1  Overhead view of the 
experimental setup
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Participants

Participants were recruited through a purposeful snowball 
sampling technique (a sampling technique where existing 
participants recruit future participants) [76] and signed up 
electronically in accordance with university Internal Review 
Board procedures. A total of 21 participants were recruited 
from the Departments of Information Sciences and Technol-
ogy, Computer Science, and Industrial Engineering at a pub-
lic university. Participants were randomly assigned to two 
groups. In the experimental group, participants completed 
the task with the CA, “Mary” (n = 11), and in the control 
condition, participants completed the task without “Mary” 
(n = 10). Participants were between 20 and 29 years of age; 
12 participants were male and 9 were female. Following 
the experiment, all participants were invited to take part in 
a follow-up interview. In total, 8 participants accepted this 
invitation.

Experimental Design

To answer our research question, what mental challenges 
do users of CAs face and how do they affect the user, a con-
trolled study was conducted. To measure mental workload, 
we recorded reaction time to the SSAT, their SSAT accuracy 
(calculated by number of correct responses divided by the 
total possible), and the NASA TLX Scores. Participants’ 
interaction frequency (how many times participants asked 
Mary for help) and participants’ performance in the WCST 
(calculated by number of correct cards divided by the total 
possible cards) were also recorded.

A full script for the study is provided in Appendix A and 
summarized here. At the start of the study, the researcher 
provided a brief introduction to participants and obtained 
informed consent, according to Internal Review Board (IRB) 
protocol. Participants then completed a demographics sur-
vey. Once they finished the survey, experimental details were 
carefully explained by the researcher, including how to do 
the WCST, how to do the SSAT, and when to start and stop. 
Additionally, participants were informed that the CA was 
roughly 95% accurate to provide a basis of analytical trust 
(trust based on analysis or logical reasoning [25]) for the 
experiment. The exact phrasing used by the researcher was 
(the full study script can be found in Appendix B):

“You may ask the Assistant at any point for a sugges-
tion and she will suggest a rule that you should try by 
analyzing your past turns. In prior testing, the Assis-
tant was found to be roughly 95% accurate.”

To help the participants better understand the tasks, 
they were required to practice once under the supervi-
sion of the researcher (five cards in total were used for the 
practice trial). Participants were free to ask any questions 

during this period. Without further questions, the researcher 
would leave the experimental room and the primary experi-
ment began. While participants were doing the task, all the 
behaviors were observed by researchers in the Observation 
Room. The WCST sounds and the CA’s suggestions were 
all directed by the researchers, and were the only feedback 
provided to the participant. Once participants completed the 
WCST, the experimenter came back to the room and allowed 
participants to finish the NASA TLX [57–59] (a survey to 
help measure their mental workload). Finally, the experi-
menter would debrief the participants on the purpose of the 
study and recap the IRB disclaimer. No qualitative data (e.g., 
observational behaviors or spoken dialog) were recorded 
during the primary task; however, follow-up interviews were 
completed with 8 participants to provide a deeper under-
standing of their actions during the study.

Wisconsin Card‑Sorting Task (WCST)

In short, in the WCST, participants must sort cards accord-
ing to the active sorting criteria that must be inferred by the 
participant throughout the task [69]. There are four potential 
sorting criteria, including the color of the symbols, the shape 
of the symbols, the number of the shapes on each card, and 
the background (as seen in Fig. 2). The WCST can be altered 
based on the card deck size, order of the cards, and the sort-
ing strategies [77]. Our WCST included 31 cards, shown 
in a fixed order for each participant, and 4 sorting criteria.

There are 4 base cards that do not change. The partici-
pant draws a card from the draw pile and places it in one 
of the four placement areas which correspond to the above 
base cards. The participant then hears a correct or incorrect 
sound played over the speaker and then places that card in 
the discard pile and repeats the process. This sound is the 
only feedback the participants receive to independently infer 
the correct matching rule.

Most participants complete the task through trial and 
error. The classification rule changes every five cards (31 
cards in total, the final rule lasts for 6 cards), introducing 

Fig. 2  Wisconsin card-sorting task
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complexity into the task. For this task, performance was 
measured by dividing the total number of correctly placed 
cards by the total number of cards.

Secondary Speed and Accuracy Task (SSAT)

Peripheral Detection Tasks (PDT) use the performance of a 
peripherally located secondary task to estimate the mental 
workload of the centrally located primary task [65]. PDTs 
rely on signal detection theory to classify user responses into 
hits, misses, false alarms, and correct rejections [78]. PDTs 
have seen use in fields ranging from automotive [64, 79, 80] 
to interface design [81] to medicine [82].

For this study, the authors developed their own PDT using 
a peripherally located laptop. The PDT was implemented 
to measure mental workload during the completion of the 
primary task [64, 65, 79, 81]. Due to the hierarchal nature 
of attention, even simple secondary tasks can be an effective 
measure for attention [65]; for example, see [64, 79, 81]. 
The interface for the SSAT was developed using PsyToolkit 
[83, 84], a website that provides a toolkit for demonstrating, 
programming, and running cognitive-psychological experi-
ments and surveys. During this test, left and right arrows 
appear on the monitor. Whenever an arrow appears, the 
participant needs to strike the arrow keys on the keyboard 
corresponding to the arrow presented on the screen. During 
this test, hits, incorrect hits, and misses are recorded. The 
reaction time and accuracy measures are used to estimate the 
participants’ mental workload.

Cognitive Assistant (Mary)

To allow for flexibility in the experimental design, a Wiz-
ard-of-Oz approach was used to simulate an autonomous 
CA [85, 86]. Wizard-of-Oz style experimental designs have 
been used in previous CA-related work, including speech 
user interfaces [87] and instructional bots [85]. However, 
they have seen relatively little use for the design of intel-
ligent systems in the mechanical design community. An 
instance of this kind of work, Jou et al. [88] used a Wizard-
of-Oz approach to demonstrate water reduction through an 
“autonomous” faucet [88]. During the initial development 
of this study, the experimenters were able to make quick 
modifications to the simulated CA using the Wizard-of-Oz 
approach. Additionally, this was a low-cost method that ena-
bled the research team to evaluate human-CA interactions 
without the technological burden of constructing a complete 
CA system (Fig. 3).

An Amazon Echo in the Experimental Room was con-
nected to a laptop in the Observation Room via a Bluetooth 
connection and, when prompted by the participant for sug-
gestions, corresponding voice lines were chosen by the 
experimenter in the Observation Room. The Amazon Echo 

was shrouded by a 3D printed casing as to not bias the par-
ticipants by the presence of the Echo. Mary could be asked 
by the participants to suggest their next rule guess, to which 
the CA would provide suggestions by saying “try color”, 
“try background”, “try shape”, or “try number”. For this 
study, the CA always provided participants with the correct 
answer. However, participants were not made aware that the 
CA would always be correct. Participants had to assess the 
correctness of the CA on their own throughout the experi-
ment. This is further discussed during the interview section 
of the paper. Yet, future studies investigating the effect of 
trust on usability in CAs could vary the accuracy of the CA 
used here. The number of requested suggestions by a partici-
pant throughout an experiment was recorded (when work-
ing with a CA). Participants requested 6 ± 3 suggestions per 
experiment. An example participant can be seen completing 
the experiment in Fig. 4.

Interview Methods

To gain a deeper understanding of the phenomena discussed 
in the prior sections, eight follow-up interviews with par-
ticipants from the study were completed. Four interview-
ees completed the study with the CA and four interviewees 
completed the study without. Participants were recruited 
using the email address provided by the participant dur-
ing the initial study. The semi-structured interviews lasted 
approximately 10 min. Questions focused on the perceptions 
of the primary task and the CA (if they were in the group 
that interacted with it).

Fig. 3  Secondary speed and accuracy test
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Results

For all metrics, an independent unpaired t test was per-
formed. Normality of the data was confirmed by check-
ing that the skewness and Kurtosis values were between 
− 2 and + 2 (produced by the Descriptive Statistics test in 
Excel’s Data Analysis ToolPak). Homogeneity of variances 
checked using Levene’s test (produced by a Single Factor 
ANOVA test in Excel’s Data Analysis ToolPak). Outliers 
were greater than three standard deviations from the mean. 
No outliers were found. Significance values greater than 0.1 
were considered insignificant, values between 0.1 and 0.05 
were investigated for both practical and statistical signifi-
cance, and values less than 0.05 were considered significant. 
The threshold of 0.05 to 0.1 for further investigation was 
based on previous work, indicating that other statistical indi-
cators (such as effect size) are better suited for weighing the 
implications of results given the arbitrary nature of the 0.05 
threshold [89, 90]. Effect sizes less than 0.4 were considered 
small, sizes between 0.4 and 0.7 were considered moderate, 
and sizes greater than 0.7 were considered large. This sec-
tion examines the participant performance on the WCST, 
performance on the SSAT, and responses to the NASA TLX.

Wisconsin Card‑Sorting Task Performance

Performance on the WCST was measured by dividing the 
total number of correct cards by the total number of possible 

cards (31), producing a percentage of correct cards indicat-
ing the performance of the participant. A box plot of perfor-
mance is provided in Fig. 5. The middle line indicates the 
median, the X represents the mean, and the lower and upper 
whiskers extend to the first and third quartile, respectively. 
This study found that participants using the CA had statisti-
cally significantly higher performance scores (67.7 ± 8.6%) 
compared to participants without the CA (55.5 ± 5.4%), 
p = 0.023. Additionally, the effect size was large, d = 0.96. In 
other words, the CA produced the desired effect of increas-
ing the performance of the participants using it.

It may be expected that higher rates of CA usage would 
correlate with higher performance. However, a linear regres-
sion analysis using the number of suggestions (independ-
ent variable) and the performance (dependent variable) 
found no significant relationship (r2 = 0.17, p = 0.21, per-
formance = 0.5536 + 0.0203x). This may imply that within 
the card-sorting task, participants scaled their use of the CA 
(i.e., participants already doing well did not feel the need to 
use the CA unlike participants doing poorly who relied on 
the CA more heavily). In future investigations, the motives 
of the participants should be studied as well.

Secondary Speed and Accuracy Task

The secondary speed and accuracy task are composed of 
two metrics: reaction time and accuracy. Reaction time is 
measured from the moment that the arrow appears on the 
screen to the moment that the participant selects an arrow 
on the keyboard. The difference in reaction time between 
participants with the CA (1878 ± 209  ms) and without 
(1968 ± 539 ms) was not significant, p = 0.73. The effect size 
was also small, d = 0.16. This indicates that the CA did not 
impact how quickly participants were able to spot and react 
to the secondary task. This suggests that CAs do not induce 
more cognitive load in users completing a simple task, as 
compared to the users working without a CA.

Fig. 4  Example participant doing the task

Fig. 5  Box plot showing greater performance with the CA than with-
out
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Accuracy is calculated by dividing the number of correct 
responses by the total number of responses. Higher accuracy 
scores indicate that participants could focus more on the sec-
ondary task, because the primary task was less cognitively 
demanding. The difference in accuracy between participants 
with the CA (94.4 ± 5.7%) and without (90.8 ± 7.9%) was not 
significant, p = 0.36. However, the effect size was moderate, 
d = 0.43, indicating that accuracy is trending toward signifi-
cance pending increased sample sizes. This may be evidence 
that participants using the CA experienced lower cognitive 
load. Future studies will continue to explore this trend.

NASA TLX

The NASA TLX is composed of six metrics: mental 
demand, physical, temporal demand, performance, effort, 
and frustration. The averages and standard deviations are 
provided in Table 1. The significance and effect size are 
provided in Table 2. This study found that participants 
using the CA had statistically significantly lower frustration 
scores (3.82 ± 1.97) compared to participants without the 
CA (6.00 ± 2.02), p = 0.090. Additionally, the effect size was 
large, d = 0.74. In other words, we found evidence that CAs 
reduce the amount of frustration users’ experience when 
engaging in repetitive tasks; the large effect size signifies 
that this finding is robust and suggests CAs may effectively 
reduce frustration during simple tasks.

Suggestions vs. NASA TLX Scores

Additional analysis was completed to investigate the rela-
tionship between the number of suggestions requested by 
the participant (independent variable) and the NASA TLX 
scores (dependent variable). From Table 3, only Temporal 
Demand trended toward significance (p = 0.076) as well as 
providing explanatory value (r2 = 0.308). The regression 
equation was Temporal Demand = 13.44 – 0.879x (the num-
ber of suggestions requested). This suggests that the more 
the CA assisted an individual, the less hurried the participant 
felt. This is particularly interesting, because there was not a 
time limit imposed on participants during the experiment. 
However, this trend should be further studied in the follow-
ing research.

Interviews

Several key insights were derived from an inductive analysis 
of the eight interviews. These insights can be categorized 
into three major themes: the necessity for trust, overcoming 
getting stuck, and how the CA design can both help and hurt.

Interviewees Without the CA

All four interviewees who performed the task without the 
CA discussed similar methods for completing the WCST 
and overcoming challenges in their interviews. These 

Table 1  NASA TLX average 
and standard deviations

Average (with) Average (with-
out)

Stdev (with) Stdev (without)

Mental demand 10.64 10.20 5.26 4.44
Physical demand 4.73 5.60 4.33 5.36
Temporal demand 8.09 9.10 4.09 3.75
Performance 8.64 9.60 3.74 2.41
Effort 9.64 11.80 4.39 3.46
Frustration 3.82 6.00 2.94 2.83
Average 7.59 8.72 2.27 1.96

Table 2  NASA TLX significance and effect size

Significance: bold for less than 0.1. Effect size: moderate effect 
between 0.4 and 0.7 (bold) and large effect greater than 0.7 (italics)

Significance Cohen’s d

Mental demand 0.853 0.083
Physical demand 0.665 0.202
Temporal demand 0.583 0.247
Performance 0.559 0.258
Effort 0.262 0.493
Frustration 0.090 0.743
Average 0.262 0.495

Table 3  The number of suggestions vs. NASA TLX scores

Significance: bold for less than 0.1. Effect size: moderate effect 
between 0.4 and 0.7 are bold

Significance r2

Mental demand 0.657 0.023
Physical demand 0.520 0.047
Temporal demand 0.076 0.308
Performance 0.989 0.000
Effort 0.486 0.055
Frustration 0.551 0.041
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participants followed a “guess and check” method where a 
new rule would be guessed until a correct rule was found. 
This rule was then followed until it became incorrect, and 
then, the “guess and check” process would begin again. 
When these participants got stuck (repeated incorrect 
guesses), they did not alter or devise a new strategy, but 
instead continued “guessing and checking” until eventu-
ally they found another correct rule. These longer periods 
of confusion led to frustration among the participants. 
Suggestions for what would have helped them in the task 
included being able to see their previous card placements 
and tips on where to place their next card.

The Necessity for Trust

A central tenant that all four interviewees who worked 
with the CA discussed was the idea of trust.

Like it would give me options, I did not really know 
if it was something I should go for or not. I still had 
to rationale it out in my head and then make the next 
decision based on my internal system. I didn’t know 
whether I could trust it or not. -Participant 2

Another participant also mentioned:

‘I think if she was going to be wrong some of the 
times I think her answer would have been probably 
similar to guessing the card myself so if I’m not sure 
that she’s right or wrong I at least know the probably 
of the guesses that I’m actually doing right now.’ 
-Participant 3

Interviewees described a natural progression from 
infrequent use to dependent frequent use as they gained 
trust in the CA. Like a learning curve, a trust curve model 
should be considered when designing CAs to account for 
this progression. Potential trust curves have been pre-
sented in [91].

It should also be noted that this trust progression is 
affected by the performance of the system. Low system 
performance may result in slowed trust-building, no trust-
building, or even an erosion of trust altogether. While high 
system performance may result in accelerated trust-building.

Lee and See identified three primary components of trust 
in automation: analytical, analogical, and affective trust [92]. 
Participants were told at the beginning of the experiment 
that the CA was roughly 95% accurate, thus building analyti-
cal trust (see Appendix A). However, participants needed to 
build a basis of analogical trust by repeatedly experiencing 
the CA accurately predicting the correct card placement. 
Once this trust had been established, participants felt com-
fortable calling on the CA more frequently. Although, the 
effects of affective trust were not observed here, this work 

shows the importance of developing all three forms of trust 
to ensure user interaction, regardless of system performance.

Overcoming Getting Stuck

The first stage of the trust progression started, for most inter-
viewees, by getting stuck. Interviewees began the experi-
ment with the mindset that they had to complete the task 
primarily by themselves. However, when they began to run 
into roadblocks, the CA became the best alternative to turn 
to. By seeing the CA accurately predict the correct card 
placement repeatedly, interviewees started seeing the CA 
as an option other than just a last resort.

At first, I really wanted to do it all myself and only get 
help when I need it and then it was like ok, that doesn’t 
have to be a thing. I can ask Mary as many times as I 
want. -Participant 1
I started using her only after I found out that, I was 
stuck with a few cards and I tested out once or twice, 
I knew that she was going to be right all the time, so 
that’s when I was dependent on her when I got stuck. 
-Participant 3

On the other hand, interviewees who did not work with 
the CA had no alternative options.

I think I just continued guessing a bunch of different 
cards until something hit. -Participant 8

They resorted to repeating the same actions with the hope 
of a different outcome, creating a feeling of frustration. This 
may indicate that even if the performance of a CA is like that 
of the human, merely providing an alternative may mitigate 
participant frustration. However, this hypothesis requires 
further testing.

CA Design Can Help and Hurt

All four interviewees that worked with the CA agreed that it 
was helpful. However, interviewees also noted that at times, 
the CA also increased their mental workload. Interviewees 
described a trade-off where the CA resulted in a constant 
additional increase in workload, but also mitigated the spike 
in workload normally produced by periods of confusion (i.e., 
the moments when the rules would change in the primary 
task).

It was another thing to do but it took the load off from 
“I don’t remember what the last card was”, “I don’t 
know what the pattern has been” I’ll just ask Mary. 
-Participant 1

In effect, the CA flattened the workload of the par-
ticipants at the cost of elevating the base workload. This 
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trade-off should be considered when designing CAs and 
explored further in future work. Such studies are critical 
for the future mindful development of Cas, because if the 
baseline or spikes are too high, it is likely that users will 
reject the system.

Discussion

Performance vs. Mental Workload

The goal of this work was to explore the effect of CAs 
on mental workload in a card-sorting task. Since the CA 
always provided the participants with the correct answer, it 
was expected that those participants using it would perform 
significantly better at the WCST. However, it is noteworthy 
that this increased performance did not come at a cost to 
mental workload, as seen from the SSAT and NASA TLX 
scores. Our results suggest that for simple repetitive tasks, 
CAs could increase performance without adding additional 
mental strain to workers. It is possible that there was no dif-
ference in mental stress in this experiment, because the CA 
and the primary task required different mental resources. 
Based on Wicken’s Multiple Resource model, auditory (CA) 
and visual (WCST) require separate mental resource pools 
and would, thus, have less of an impact on each other than 
two audio or two visual tasks [51]. Our findings support the 
growing body of literature surrounding the design of CAs 
and the effect design decisions may have on mental work-
load. For example, Strayer et al. [7] found that CAs increased 
mental workload in driving tasks, yet Brookhuis et al. [6] 
found that CAs decreased mental workload in a similar task; 
these conflicting findings point to the effect the design and 
modality of the CA has on mental workload.

Frustration

The NASA-TLX frustration scores showed that users using 
the CA reported being less frustrated as compared to the 
control group. CA technology could be further improved by 
prompting the device to assist the user, not only when the 
user requests, but also upon behavioral cues that may indi-
cate frustration. This is known as adaptive affective comput-
ing, an approach which infers the users’ emotions and adapts 
the graphical interface to counter user frustration [93]. Real-
time or just-in-time interventions via constant data collec-
tion could prove incredibly beneficial [94] as intervention 
techniques could include detecting users’ emotional state 
and providing a real-time strategy to decrease users’ stress/
frustration.

Trust

Qualitative data from semi-structured interviewees most par-
ticipants cited a lack of trust in the CA as the key inhibitor 
preventing them from using it at each opportunity. There are 
three types of trust (analogical, analytical, and affective): 
analogical trust is built through experience, analytical trust 
is built through shared information, and affective trust is 
built through emotional attachment [25]. In the interviews, 
participants cited analogical trust as the primary means of 
building trust in the CA.

So, once I started to build confidence that Mary knew 
what she was talking about, I think I started asking her 
more often. -Participant 1

This trust-building process was often catalyzed by the 
presence of an obstacle. Meaning that the presence of the 
obstacle forced users to rely on the CA, showing them that 
the CA could be trusted. This phenomenon is also seen in 
human-to-human relationships; for example, team-building 
exercises use challenges to build collaboration and trust 
amongst team members [95]. However analytical trust was 
also built pre-task when the participants were told the CA 
was roughly ~ 95% accurate and affective trust was built 
through the name and voice of the CA. This may imply that 
while they can build a strong foundation of trust through 
affective and analytic trust, they will still need to go through 
an introductory phase of analogical trust-building before 
they can expect users to interact with their CAs as expected. 
This could be combatted with tutorials which allow the users 
to see the CA working with a 100% success rate on prede-
fined examples. Future studies will investigate this phenom-
enon further.

Mental Workload

Finally, the quantitative and qualitative results describe a 
complex effect of CAs on participants’ mental workload. 
The quantitative results found no significant difference in 
the secondary task between the control and CA groups. 
However, in the post-task interviews, participants provided 
a more nuanced explanation, describing how, at times, 
the CA hurt or helped their mental workload. Participants 
described the CA as “another thing to think about,” increas-
ing their perceived mental workload for the portion of the 
session where they were not actively engaged with the CA. 
Conversely, participants also stated that they felt a decrease 
in their perceived mental workload during the portion of 
the session where they engaged with the CA to assist them 
when the primary task confused them. This occurred most 
often when the sorting rule would change in the WCST. 
Because the CA helped and hurt participant’s perceived 
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mental workload, this may explain why the quantitative 
results found no significant differences.

This trade-off in mental workload is important for CA 
designers to consider, because a consistent increased level of 
mental workload may be overburdening for some jobs. Addi-
tionally, unlike physical items or even graphical interfaces 
where connections and interactions can be clearly displayed, 
CAs rely entirely on audible signals, requiring users to have 
a clear mental model of the expected interactions. Thus, it is 
incredibly important to combat these problems by keeping 
the mental model of the CA clear, simple, and intuitive so 
little mental work is required to account for the CA and its 
interactions while working.

The properties of an object that define its possible uses 
are known as affordances. Technology with less physical 
components (e.g., CAs like smart-speakers) lack physical 
affordances that help users generate mental models. The 
functionality and limitations of CAs lie in their ability to 
understand and execute the user’s intentions through natu-
ral language. Invisible affordances like these that exist but 
are in a system too large and ambiguous to easily discern 
must be intentionally revealed. Prior research in the field 
has presented similar findings in different niches. Tolmie 
et al. proposed novel approaches to handling technological 
interruptions through “making the grounds of disturbance 
visible and available to practical reasoning” [96]. Chen et al. 
found that increasing the transparency of a UAV’s autono-
mous capabilities, subject’s mental workload was signifi-
cantly decreased and situational awareness was increased 
[15]. Along with building trust, the aforementioned tutorials 
could be used to clarify the CA’s capabilities and controls 
(normally perceived through affordances).

Limitations

In both a limitation of this study and an area for future work, 
participants in this study were not asked to complete a per-
sonality assessment nor where they queried for their previ-
ous experiences with AI/CA technology. Personality types, 
for example, could have been investigated for any links to 
emotional responses such as frustration. Both avenues will 
be investigated in future work. Additionally, future work 
will consider a larger and more diverse sample population 
as most participants were engineering/information science 
and technology (IST) students. Participants from different 
fields (e.g., psychology, biology, history, etc.) and differ-
ent experience levels (i.e., professionals) may have different 
perspectives. Furthermore, the number of participants in the 
control and task groups, respectively, is too few to be gener-
alized broadly. Thus, further work on this research question 
is required to generalize these findings to a broader degree. 
Finally, the CA used in this study was 100% accurate with its 
suggestions to the participants. Participants were explicitly 

informed that in early testing, the CA demonstrated 95% 
accuracy with suggestions. It is possible some participants 
may have realized the CA was 100% accurate which may 
have resulted in an accelerated trust relationship between the 
CA and the participant. We note, however, the investigation 
of errors and their effect on the mental factors influenced by 
working with CAs was outside the scope of this work and is 
being fully investigated in the following studies.

Conclusion

Our research study aimed to answer the following research 
question: what mental challenges do users of CAs face and 
how do they affect the user. Guided by a mixed-methods 
study design, this study investigated the effect of CAs on 
mental workload, frustration, and trust. Findings indicate 
that CAs can improve the performance of a simple task and 
that CAs have a complex effect on mental workload. Addi-
tionally, through the analysis of follow-up interviews, it was 
recommended that tutorials or other onboarding techniques 
should be further investigated for Cas, because they provide 
a means of developing analogical trust and intentionally 
revealing invisible affordances before regular usage. Finally, 
it is important that CAs have a clear, simple, and intuitive 
structure, so that minimal mental work is needed when con-
sidering how to use the CA.

Appendices

Appendix A: Post‑Task Interview Questions

1. How difficult did you find the card-sorting task?
2. How frustrating did you find the task?
3. What methods did you use to solve the card-sorting task?
4. How did you overcome getting stuck?
5. Did you work with the CA?

a. If yes

 i. How and when did you intend to use the 
CA?

 ii. Do you feel the CA helped, why or why 
not?

 iii. Do you feel the CA added to your work-
load?

b. If no
 i. What would have helped you complete the 

card-sorting task?
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Appendix B: Study Script

All

Thank you for agreeing to participate in our study. All of the 
information collected is anonymous. You have the right to 
withdraw your participation, or any/all of your data without 
giving a reason and retrospectively.

Today you will take a demographic survey, then we will 
cover the details you need to complete the study, then you 
will take a post-task survey, and finally, we will wrap up 
with some more information.

Before we begin, please complete the U.S. Demographics 
Survey provided on the laptop before you.

Wait for completion of survey.
Thank you. Today you AND YOUR ASSISTANT will be 

completing the Wisconsin Card-Sorting Task. In this task, 
you have 4 base cards.

Researcher points to the four base cards laying in front 
of the participant.

You will need to select a card from the deck.
Researcher points to the deck laying in front of the 

participant.
And place that card in front of one of the 4 base cards that 

you believe matches the current rule. The possible rules are 
the color of the symbols (blue, orange, yellow, or green), 
the symbols themselves (circle, square, triangle, or star), 
the number of the symbols (1, 2, 3, or 4), or the style of 
background (striped, white, or dotted). For the white back-
ground rule, you may place it on either white background 
card. Once a card is placed, you will hear a sound for correct 
or incorrect.

Regardless of correct or incorrect, you will then place that 
card on the discard pile.

Researcher points to the discard pile area in front of the 
participant.

You will repeat this process until all cards have been 
moved to the discard pile. As you go along, the rules you 
are matching will change.

Do you have any questions?
Answer questions if necessary. 

For participants using the CA
To help you with this task, you will be working on a team with our 

own personal assistant. Assistant, please introduce yourself
Researcher 2 plays introduction on assistant
You may ask the Assistant at any point for a suggestion and she will 

suggest a rule that you should try by analyzing your past turns. In 
prior testing, the Assistant was found to be roughly 95% accurate

Do you have any questions about how to interact with the Assistant 
or what she can be used for?

Answer questions if necessary

All

While you complete the Wisconsin Card-Sorting Task, 
you will be doing a secondary speed and accuracy test. 
Throughout the task, you will see either a left or right 
arrow appear. When you see the arrow appear, please 
select the corresponding left or right arrow on the key-
board. The secondary task will continue to run after you 
have completed the Wisconsin Card-Sorting Task but 
please stop doing the secondary task when you discard 
your last card. Let the secondary task run itself out.

Please practice the secondary task until you feel 
comfortable.

Researcher 1 shows a sample secondary task.
Now we are going to go through a quick practice trial.
Run through practice trial.
Do you have any questions?
Answer questions if necessary.
I will now leave the room. Once I have closed the door, 

you may begin. Once you’ve completed the task, I will 
return, and we will debrief.

Researcher 1 leaves and participant completes the 
experiment.

Thank you for your participation. Please complete this 
post-task survey.

The aim of this study is to measure the amount of men-
tal strain produced by our Assistant. Half of the partici-
pants will be doing the task with the Assistant and half 
will be doing the task without her. We measured how well 
you did in the Wisconsin Card-Sorting Task, your reaction 
time and accuracy in the secondary task, how often you 
interacted with the Assistant, and your perceived workload 
from the post-task questionnaire.

All of the information collected is anonymous. You 
have the right to withdraw your participation, or any/all 
of your data without giving a reason and retrospectively. 
At any point, you make contact with the principal investi-
gators. Here is their contact information.

Provide contact information.

Availability of data and materials https:// github. com/ torst ennam aier/ 
Query_ Conun drum.

Code availability https:// github. com/ torst ennam aier/ Query_ Conun 
drum.
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