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Abstract

The rising popularity of the sensor-equipped smartphone is
changing the possible scale and scope of human activity infer-
ence. The diversity in user population seen in large user bases
can overwhelm conventional one-size-fits-all classication ap-
proaches. Although personalized models are better able to
handle population diversity, they often require increased ef-
fort from the end user during training and are computationally
expensive.
In this paper, we propose an activity classification frame-
work that is scalable and can tractably handle an increas-
ing number of users. Scalability is achieved by maintaining
distinct groups of similar users during the training process,
which makes it possible to account for the differences be-
tween users without resorting to training individualized clas-
sifiers. The proposed framework keeps user burden low by
leveraging crowd-sourced data labels, where simple natural
language processing techniques in combination with multi-
instance learning are used to handle labeling errors intro-
duced by low-commitment everyday users. Experiment re-
sults on a large public dataset demonstrate that the framework
can cope with population diversity irrespective of population
size.

Introduction
With the explosion of smartphones, it is now possible to
collect real-time daily activity data over a large population.
This continuous availability of a vast amount of data changes
the possibilities of human-centric applications and sensing.

But, as the scope of the system broadens from carefully-
controlled experiments to mass-generated data, the conven-
tional computational methods for activity recognition are
overwhelmed by user heterogeneity in terms of age, behav-
ioral patterns, lifestyle and so on. Performance degradation
of classifiers in activity recognition due to the difference be-
tween people is known as population diversity problem. It
has been shown (Lane et al. 2011b) that the population di-
versity problem can seriously affect the classification accu-
racy even when the population consists of as little as fifty
users.

While personalized models (Longstaff, Reddy, and Es-
trin 2010; Stikic and Schiele 2009) usually fare much better
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in handling population diversity, the improvement comes at
the expense of increased user involvement. The accuracy of
classification requires each user to provide carefully labeled
data-segments. As the classifier works in isolation, it leads
to redundant efforts while learning about the same activities
over similar users.

To handle population-diversity in a practical way, a num-
ber of studies (Lane et al. 2011a; 2011b) suggested net-
worked approaches by sharing data across users. To en-
sure reasonable accuracy, crowd-sourced training samples
are weighted according to forms of inter-personal similar-
ity. But, none of the proposed methods scale well with
an increasing population. For a large user-base, the cost
of i) computing pair-wise similarity network and more im-
portantly, ii) exponential cost of training classifiers with
huge datasets resulting from crowd-sourcing, gets imprac-
tical even with tens of users (Lane et al. 2011b). As inter-
personal differences is more of an issue for a large user base,
being not scalable severely limit the usability of existing ap-
proaches.

This paper proposes a novel scheme to handle population
diversity in a scalable way. We maintain groups of similar
users to bring down the cost of computing similarity net-
works and using the similarity measures for training. To
achieve comparable accuracy while keeping the user-burden
low, our framework focuses on ensuring exploiting crowd-
sourcing within a group. To enable robust crowd-sourcing
even in the case of unreliably labeled data from users, we
handle the two common errors (Peebles et al. 2010) — se-
mantic discrepancy in the labels and the overlapping bound-
ary of activities. To handle semantic discrepancy, we pro-
pose to consider it as a Natural Language Processing (NLP)
problem. And, to handle overlapping class boundary result-
ing from inaccurate start and ending times, we use Multi-
Instance learning.

The contributions of the paper are:

• The proposed framework handles population diversity in
a way that remains practical even as the user population
increases in size. To do so, we maintain group of similar
users and limit embedding inter-personal similarity within
the group.
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Figure 1: The processing phases of the proposed activity recognition framework for handling data diversity and labeling incon-
sistencies.

• We enable more robust crowd-sourcing. Previous work
on sharing training activity data across users assumes that
the labels are consistent. This assumption might be true in
case of conventional controlled environments, but while
working with a large population of low-commitment
users, it is necessary to be robust enough against incon-
sistent labels.

• By using a large public dataset, we evaluate our frame-
work, both in terms of accuracy and scalability.

Framework
Figure 1 shows the different steps in our framework for pro-
ducing personalized classifiers that can cope with the popu-
lation diversity problem in a scalable manner. We describe
the steps in more details below.

Similarity Network
As the population grows, the user base starts to get more
diverse. Apart from visible demographic dissimilarities like
age, weight, gender or fitness level, the population starts to
get more diverse in terms of behavioral and lifestyle pattern.
As a result, even the core activities like walking can have
different signature in sensor data across different group of
people. For example, in CSN (Lane et al. 2011b) the authors
pointed out the difference in features for two distinct sub-
groups of users performing walking as seen in Figure 2.

As this inter-personal dissimilarities manifests as the dif-
ferences in the pattern of raw data, previous approaches
(Lane et al. 2011b; 2011a) use similarity networks for train-
ing classifiers. In a similarity network graph, each node rep-
resents a user and the edge-weight represents similarity be-
tween two users. There can be multiple similarity networks
to leverage affinity among users in different dimensions —
physical similarity network might be used to recognize run-
ning while diurnal patterns might be leveraged while infer-
encing commuting activities. Each classifier for every user
is trained on a dataset consisting of weighted data samples
from all the users in the population based on the similarity

networks. CSN (Lane et al. 2011b), for example, maintains
three different similarity networks and a different classifier
is trained for each network. To incorporate user similar-
ity while training a classifier for user ui, the data samples
from other user uj is weighted according to their similarity,
S(ui, uj) at the initial iteration. So, for each user uj in the
population, data sample xuj from that user has the initial
weight as

weight(0)(xuj
) = S(ui, uj).

As a result, the computational cost of training classifiers
can grow out of hand even with tens of users.

To make training of classifiers feasible over a large user-
base, we propose to cluster similar users and constrain the
crowd-sourcing of data to only users within the same clus-
ter. So, for a fixed number of clusters the number of classi-

Figure 2: The difference in accelerometer features as two
distinct subgroups perform the same activity — walking
(originally published in Lane et al. 2011b). The first two
principal components of the features are shown above.
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fiers trained remains constant irrespective of any increase to
the size of the user population. For each type of similarity
networks, we use different sets of clusters to leverage dif-
ferent dimension of affinity among users. Here we describe
clustering users depending on two different notion of simi-
larity — sensor-data similarity and lifestyle similarity. But,
it should be noted that other affinity metrics can easily be
accommodated in the framework.

Sensor Data Similarity As shown in Figure 2 the dif-
ference among users can manifest as the difference in raw
sensor-data. So, the similarity in the accumulated data be-
tween two users can be a good indicator of inter-personal
affinity. Given two users ui, uj and the corresponding ac-
cumulated feature sets Fui

and Fuj
, the similarity function

can be defined as the overlap between sets, S(ui, uj) =
|Fui

∩Fuj |
|Fui

∪Fuj |
, known as the Jaccard coefficient. But, comput-

ing the similarity metric across a huge activity dataset for a
large user population is clearly not feasible. So, we use sub-
linear time near-neighbor search known as Locality Sensi-
tive Hashing (LSH) (Indyk and Motwani 1998).

LSH is a well known technique (Buhler 2001; Ravichan-
dran, Pantel, and Hovy 2005; Das et al. 2007) to efficiently
find near-neighbors in a large database. In LSH, data points
are hashed using multiple hash functions so that collisions
between similar points occurs with higher probability. Find-
ing near-neighbors requires hashing the query point as well
to locate the buckets it belongs to. For the Jaccard coefficient
similarity, there exists a LSH scheme called Min-Hashing
(Cohen 1997).

To use Min-Hashing, we need to randomly permutate the
set of all feature S vectors and the hash value for each user
ui is the index of the first feature vector in the permutated
set that belongs to Fui

— the set of feature vector for user
ui. For this random permutation, uniformly chosen over the
set of all permutations of S, the probability of collision is
exactly same as the Jaccard coefficient (Cohen 1997; Broder
1997; Cohen et al. 2001). The Min-Hash produces a set
of hash buckets where the probability of two users ui, uj

being in the same bucket is same to S(ui, uj) — essentially
working as a probabilistic clustering algorithm where each
bucket is a cluster.

To ensure higher precision in clustering, we can con-
catenate p hash-values (Indyk and Motwani 1998) so that
the probability of two users being in the same bucket is
S(ui, uj)

p, for p > 0. To avoid low recall resulting from
the clusters being too refined, we repeat the steps q times.
Each user belongs to q clusters where each cluster is defined
by concatenation of p hash values.

Permutating the set of feature vectors for the whole activ-
ity dataset is computationally unfeasible. Instead, we gener-
ate p × q independent, random hash-seeds and each feature
vector is mapped to a corresponding hash-value. The hash-
values then serves as the index in the permuted set — result-
ing in having similar characteristics to the ideal Min-Hash
(Indyk 1999).

Lifestyle Similarity The diversity in lifestyle (as mea-
sured by location and temporal patterns) can provide an im-

portant insight into the context of different activities. De-
pending on diurnal patterns and mobility distribution same
activities can have different signature. The use of lifestyle
similarity like diurnal patterns, has been shown to be ben-
eficial in inferring different activity classes such as driving
(Lane et al. 2011b).

In CSN (Lane et al. 2011b), lifestyle similarity has been
computed from mobility patterns and diurnal patterns by tes-
sellating data into m distinct bins. For GPS estimates in mo-
bility patterns, the bins can be two dimensional and for diur-
nal patterns each bin can represent the hour during a day in
the week — ranging from 0 to 167, 0 denotes the start of the
week while 167 marks the final hour of the last day. For each
user, CSN would construct a histogram {T (k), k ∈ [1,m]}
of these bins. Histogram frequencies are normalized and the
value of the histogram vector reflects the distribution of the
data belonging to the user. CSN defines the lifestyle similar-
ity between two users ui, uj as

∑m
k=1 T

(k)
ui T

(k)
ui .

Given the relatively low dimension of the histogram vec-
tors, the above similarity measure can be used in common
clustering algorithms. But, for large user-base, we sug-
gest using Earth Mover’s Distance (EMD). Given two dif-
ferent lifestyle histogram T (k) and T (m), the earth mover’s
distance EMD(T (k), T (m)) is defined as the minimum cost
of transforming one distribution to other. This is a popu-
lar metric in image and computer vision research (Rubner,
Tomasi, and Guibas 2000; Zhao, Yang, and Tao 2010). It
is expensive to compute as exact distance requires a solu-
tion to minimum transportation problem (Hitchcock 1941).
As a result there has been extensive work in approximat-
ing the distance metric efficiently (Ling and Okada 2007;
Shirdhonkar and Jacobs 2008). More importantly, (Charikar
2002) has shown that LSH scheme exists for EMD.

Robust crowd-sourcing
By enabling crowd sourcing, classifiers can use the steady
stream of data from other users to find more discriminat-
ing examples to be incorporated into the model. But, given
that one of the major goal is to keep the user burden low,
the discrepancy in the labels provided by the users with
low-commitment is unavoidable. For our framework to be
robust enough against labeling errors and inconsistencies,
we specifically focus on semantic discrepancy and bound-
ary overlapping.

Semantic Discrepancy in Labels Prior work in activity
recognition usually makes the assumption that labels are
consistent and the label domain remains fixed. While this
might be true in simple scenarios, when people can enter
free-form text as label to mark activities, the issue of assign-
ing different labels to similar activities starts to become a
concern (Peebles et al. 2010). Similar activity with different
labels dilutes the training pool and essentially confuses the
classifier.

Given the textual nature of the labels, we suggest to con-
sider finding similar activities as a NLP problem. Specif-
ically, we use a similarity measure in terms of semantic
distance between class labels to find similar classes. The
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semantic distance can be calculated from hyponyms con-
structed from WordNet hierarchy (Fergus et al. 2010). After
finding similar labels, we merge the samples under a generic
single label if the number of training samples fall below an
experimentally determined threshold. Otherwise, the data
samples are shared during training weighted by their simi-
larity.

Boundary overlapping Data collection for activity on
mobile phone usually requires users to mark the start and
end of the activity. This can lead to recall errors, lack of
temporal precision and interruptions. For example some-
one labeling gym may forget to mark end point resulting
in overlapping boundary with driving data, which can af-
fect the performance of classifiers. Multi-Instance Learning
(MIL) can handle boundary overlapping robustly because of
the more flexible labeling assumptions.

In MIL, the samples are not treated as positive or negative
— labels are assigned to a set of instances grouped together
into “bags”. For a bag i and sample j in the bag, the proba-
bility of a single instance being positive is denoted by pij .

We adopt the Noisy OR model for each bag. The proba-
bility that a bag is positive is given by

pi = 1−
∏

(1− pij) .

This essentially means that a bag is labeled positive if it con-
tains at least one positive sample, otherwise, it is labeled as
negative. So, under MIL settings, the bag labels provide
only partial information — it needs to cope with the ambi-
guity of not knowing which of the instances are positive and
which ones are not. But, at the same time, the effect of noise
is minimized in classifier training.

MIL has been successfully applied to image segmentation
(Vezhnevets and Buhmann 2010), face detection (Guillau-
min, Verbeek, and Schmid 2010) and handling label noise
in video classification (Leung, Song, and Zhang 2011). It
has also been used in activity recognition in sparsely labeled
data (Stikic and Schiele 2009). We use boosting based MIL
where all instances contribute equally and independently to
a bag’s label (Xu and Frank 2004).

Multi-view of data As data collection from smartphones
is transparent to the user, a large pool of unlabeled data can
quickly accumulate. To make use of this plentiful and oth-
erwise wasted data, we suggest using unlabeled data to aug-
ment the classifier model.

When multiple similarity networks are available, similar
to CSN (Lane et al. 2011b), we suggest to exploit multiple
views of different classifier by using multi-training (Blum
and Mitchell 1998). But, if there is only one similarity net-
work available, En-Co-Training (Guan et al. 2007) or demo-
cratic co-learning (Zhou and Goldman 2004) can be used as
they do not make assumptions about independent views of
the data.

In this approach, each classifier keeps track of labeled and
unlabeled crowd-sourced data and iteratively tries to label
the unlabeled data of other classifier. After each such iter-
ation, classifiers are retrained by using the additional new
labels as assigned by other classifiers.

So, the steps in our framework can be summarized as:

• Cluster similar users into a group. Similarity networks are
formed within each of these clusters.

• Finding semantically similar textual labels and reassign
labels.

• Training a MIL inspired Boosting algorithm to learn ac-
tivities from the shared training samples in a group where
each sample is initially weighted by user similarity.

• Using multiple views of the data for leveraging the large
amounts of unlabeled data that is crowd-sourced.

Evaluation
In this section, we evaluate the effectiveness and justify our
design choices. The following experiments show that the
framework scales much better than previous methods with-
out sacrificing accuracy.

Dataset
For evaluation we use a large public dataset from ALKAN
system (Hattori et al. 2010). This dataset contains data from
more than 200 users and consists of over 35,000 activities.
The data was gathered from the mobile device clients —
from iOS and Android applications. The dataset contains
three axis accelerometer data from daily, real-life movement
for more than a year resulting in relatively large dataset that
can provide a good insight about the probable scalability is-
sues that might arise in large-scale deployment. This dataset
also contains activities with semantically close labels like
train.sit, chat.sit, sit and so on.

Some records in the dataset has inconsistent number of
data-samples in terms of activity duration. We think the in-
consistency arises when the phone can not sample sensor
reading at the specified sampling rate, e.g., when talking on
the phone. To identify errors in duration, we performed a
time-window based sanity check by using the time-stamps
in the data. The idea is, assuming that data is sampled at
20Hz, a chunk of data containing N consecutive samples
represents a time-window of N

20 second. So, reading every
N samples and comparing the values in the time-stamp col-
umn will give an insight into the variance present in that
window. Around 1.1% of total data-sample was discarded
because of inconsistency in time-stamp.

Feature Computation
For feature computation, a window size of 128 samples is
used with 64 samples overlapping between consecutive win-
dows. For the sampling rate of 20Hz, each window repre-
sents 6.7 seconds of data. Mean, energy, frequency-domain
entropy and correlation features were extracted from the
sliding windows signal.

The DC feature in the sample window is the mean-
acceleration value of the acceleration. The energy feature
is a normalized sum of the squared discrete FFT compo-
nent magnitudes of the signal excluding the DC component.
Frequency-domain entropy is calculated as the normalized
information entropy of the FFT magnitudes — DC feature
is excluded from the calculation. Correlation is calculated
between all pairwise combination of axes.
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Figure 3: This ROC curve illustrates the effect of merging
semantically similar labels. The classifier accuracy using the
merged labels outperforms classifiers trained using only the
original labels provided by users.

Effect of Merging Labels For evaluating the effect of
merging labels, we consider the activities associated with
sitting and walking. The activity “sitting” consists of the
labels train.sit, chat.sit, sit and eat.sit and for walking the la-
bels are walk.slow, escalator.walk.up, escalator.walk.down
and walk. These activities have been selected because sig-
nificant amount of data have been recorded for each label.
The dataset contained more than 46 hours of activities. For
each label related with sitting we train a classifier where all
other activities are marked as negative samples. For merged
labels, we train the classifier with activities related with sit-
ting marked as positive examples having different weights
and walk related activities are marked as negative exam-
ples. For performance measurement, we use ten fold cross-
validation.

From figure 3, the performance gain in the classifier
trained from merged label is apparent from the top-left-most
placement of the ROC curve. The accuracy of the classifiers
trained by isolated labels are rather poor, but it is consistent
with earlier findings (Hattori et al. 2010).

Robustness against boundary overlapping In activity
recognition systems obtaining high-quality training data has
always been a central issues. For large-scale deployment,
the problem is more severe. Recording sensor data through
real-life, daily activities means lack of temporal precision
and frequent disruption. To study the effect of such noise we
switch some negative samples to positive samples — simu-
lating the interruption by activities in the middle of record-
ing. We create dataset with 1%, 5%, 10% and 20% noise in
positive labels. We train a MIL AdaBoost and a simple Ad-
aBoost classifier using same dataset. In both cases, the weak
classifier is a C4.5 decision tree. The result is shown in Fig-
ure 4. It is apparent that MIL based methods performs much
better in the presence of noisy data.

Figure 4: Performance of multi-instance learning in han-
dling activity labels with overlapping boundaries.

Figure 5: Time (in seconds) to train a classifier for a single
user.

Scalability The cost of training classifiers is the bottle-
neck of deploying activity recognition system that uses simi-
larity networks. To evaluate how well our system scales with
an increasing population, we select twenty users and train
classifiers to recognize activities having labels sit, walk and
stand consisting of more than 686 hours of sensor data.

We compare the training time of classifiers with CSN
(Lane et al. 2011b) which uses a fully connected weighted-
graph for learning models. While CSN used a computer
cluster for training, in our evaluation we use a single ma-
chine (2.3 GHz Intel Core i5 CPU and 4 GB of memory).
We limited the evaluation to twenty users and single type of
similarity network since CSN would take too long to train
otherwise. Figure 5 shows the effect of increasing the popu-
lation while training a classifier for a user based on lifestyle
similarity network. The training time of a classifier in our
framework is constant for a fixed number of clusters. Con-
sequently, increasing the population does not incur much ad-
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Figure 6: Classifier accuracy in a population of 20 users.

ditional cost. In contrast, the training time for CSN, from 4
users to 20 users increases by 370 times, making it imprac-
tical to use in large user base.

The important question is how our clustering approach
to manage computational cost will affect classifier accuracy.
For measuring classifier performance we use a separate test
set containing around three hours of sensor data for sit, walk
and stand. Figure 6 shows the accuracy of the classifiers
for this experiment. The classifier for CSN has been trained
on the fully connected lifestyle similarity graph for twenty
people while the clustered classifier has been trained on five
users with high lifestyle similarity. We selected these three
activities and limit the dataset to a single similarity network
of twenty users because of the computational cost associ-
ated with training for CSN. From the result, we can say that
training using clustered users maintains reasonable accuracy
while keeping computational cost low.

Conclusion
In this paper, we introduced a scalable way to handle the
population-diversity problem. We demonstrated that our
framework scales well as the user population increases
without sacrificing classification accuracy. Furthermore,
our framework introduces new techniques for coping with
crowd-sourced labeled activity data, which although can be
plentiful can also be prone to error. Our results showed
the effect in classifier accuracy due to user disagreement
with activity class semantics (e.g., labeling the same activity
class with different textual descriptions). We demonstrated
how this problem can be improved with NLP-based tech-
niques proposed in our framework. Finally, we introduced
techniques specifically to handle segmentation errors during
crowd-sourcing, which occur when users make mistakes as
to precisely when activities start and end.

While the results are promising, there are still challenges
related to long-term usage by a large user population. Like
the conventional methods, our framework assumes com-
plete knowledge of the similarity network between all pair
of users. This will not be available, for instance, as new
users join the system for whom there will be insufficient

data to compute a similarity network. Additionally, we as-
sume these similarity networks are static, which ignores the
significant drift in user behavior that will occur over time.
We plan to further work on the framework to address these
design and implementation issues with the eventual goal of
coming up with a framework which can be deployed over
large population.
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