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People behave differently in different environments. Psychologists have ac-
knowledged this phenomenon in their theories and research for many decades
(Fleeson & Jayawickreme, 2015; Funder, 2006; Lewin, 1936; Mischel
& Shoda, 1995; Russell & Ward, 1982). Yet, past work focused on under-
standing and explaining human behavior in different environments has often
had to rely on methods that suffer from a lack of ecological validity, such as
survey-based studies and laboratory studies. This has led to the repeated cri-
tique that behavior and environments are seldom studied in the natural course
of daily life (Baumeister, Vohs, & Funder, 2007; Funder, 2009; Rozin,
2001). In recent years, the diffusion of ubiquitous, computationally powerful,
and sensor-laden consumer technologies (e.g., smartphones, wearables, smart
home devices) has facilitated the passive assessment of people’s behaviors and
surrounding environments. When combined with machine learning approaches,
this data can be analyzed to predict an individuals’ psychological characteris-
tics (e.g., de Montjoye, Quoidbach, Robic, & Pentland, 2013; Kalimeri,
Beiró, Delfino, Raleigh, & Cattuto, 2019; Yakoub, Zein, Yasser, Adl, &
Hassanien, 2015). These methodological developments have the potential to
revolutionize social science because they facilitate unobtrusive data collection
as people go about their day-to-day lives (Harari et al., 2016; Miller, 2012).

In this chapter, we summarize person-environment research that uses ubiq-
uitous computing (ubicomp) devices to understand and assess the different
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2 Measuring and Modeling Persons and Situations

components of the Lewinian equation (i.e., B= f(P, E); Lewin, 1936). To do so,
we provide an illustrative literature review to showcase opportunities for using
popular ubicomp devices—smartphones (e.g., Lane et al., 2010), wearables
(e.g., Piwek, Ellis, Andrews, & Joinson, 2016), and smart home appliances
(e.g., Cook & Das, 2004; Elnaj, 2019)—for measuring and modeling behav-
iors, persons, and environments. The first section of our chapter focuses on how
ubicomp devices are being used to collect data about different kinds of behav-
ioral factors (i.e., movement, social interactions, and daily activities). The sec-
ond section focuses on how ubicomp devices are being used to infer personal
factors (i.e., psychological characteristics and states). The third section focuses
on how ubicomp devices are being used to assess environmental factors (i.e.,
physical properties of environments, locations, and social contexts). To facili-
tate the use of ubicomp technologies by researchers in the social sciences, we
focus our review on a discussion of the following core issues: (1) how informa-
tion collected by ubicomp devices can be used to measure and model variables
that are of interest to social scientists, (2) how researchers have evaluated the
reliability and validity with which ubicomp devices can be used to sense be-
haviors, persons, and environments relative to some predefined ground truth,a
and (3) the core considerations and future directions for social scientists inter-
ested in using ubicomp devices for person-environment research in psycholog-
ical science. We do not discuss data sources not directly related to ubicomp
devices, such as call-records from phone companies or language expressed on
social media (e.g., Kern, this volume; Appel & Matz, this volume).

Assessing behaviors, persons, and environments with ubicomp
devices
“Ubiquitous computing” is a term used to reflect the current landscape of digi-
tal devices that are omnipresent in people’s daily lives (Weiser, 2002). Ubiq-
uitous computing consists of “… a vision of people and environments aug-
mented with computational resources that provide information and services
when and where desired” (Abowd, Mynatt, & Rodden, 2002, p. 48). For
instance, a typical tech-savvy adult living in the United States might possess
a smartwatch to track their fitness, a smartphone to always stay connected
with their loved ones, and a pair of wireless headphones to listen to music. In
their home, they might have internet-connected TVs that allow them to browse
the internet, automated vacuum cleaners that autonomously navigate and clean

a Ground truth refers to data collected through direct observation or self-reports which are consid-
ered to be the objective metric that is used to evaluate the accuracy of inference-based predictive
models.
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their apartment, and loud-speaker systems that they can control with voice com-
mands. These widely adopted devices contain mobile sensors to continuously
collect data about the physical world, metadata logs that describe digital behav-
ior, and connectivity technology that facilitate the reliable transaction of col-
lected data with other devices.

When harnessed for data collection purposes, ubicomp devices can be con-
sidered as a new form of ambulatory assessment methodology. Ambulatory as-
sessment describes a range of methods (e.g., digital diary methods, ecological
momentary assessments, mobile sensing; Mehl & Conner, 2012; Wrzus &
Mehl, 2015) that typically use digital devices to capture subjective (via self-re-
ports) and objective measurements (via behavioral observation) in the context
of people’s natural environments (Trull & Ebner-Priemer, 2013; Truong &
Hayes, 2007). Ubicomp devices are particularly consequential for psychologi-
cal assessment because they collect personal data about individuals’ daily lives
as part of their routine functioning. In the context of ubicomp devices, personal
data refers to “any kind of log or sensor data that directly describes an individ-
ual” (Wiese, Das, Hong, & Zimmerman, 2017, p. 452). Specifically, today’s
off-the-shelf ubicomp devices generate two primary forms of personal data that
can be accessed for research purposes: sensor data and metadata logs.

Sensors are transducers, converting variations in a physical quantity, such
as pressure or brightness, into an electrical signal. They are typically embed-
ded in ubicomp devices to support features such as activity recognition and
voice-based control. Common types of sensors include accelerometers, ambient
light sensors, barometer, Bluetooth radio (e.g., sensing networks of connected
devices), global positioning system (GPS) data, gyroscope, thermometer, and
wi-fi scans (e.g., sensing networks of connected devices). Mobile sensors are
typically used to obtain assessments of inferred behaviors (e.g., physical activ-
ity type, wake vs sleep) and contexts (e.g., the acoustic ambiance of the envi-
ronment). Metadata, on the other hand, can be conceptualized as “data about
data” and provides details about the origins, properties, and functions of digi-
tal trace data created through the use of computing technology (Schwab, Mar-
cus, Oyola, Hoffman, & Luzi, 2011). Common sources of metadata include
system logs obtained from ubicomp devices which contain information about
calls, text messages, usage of device-based applications, wi-fi/Bluetooth, and
media access control (MAC) addresses and payment information (Al-Sharrah,
Salman, & Ahmad, 2018).

Below, we review how these new sources of data can be used to infer be-
havioral, personal, and environmental characteristics. We focus much of our
illustrative review on smartphones and wearables because these technologies
have already been widely adopted by consumers and researchers alike. We
also include some discussion of research using smart home devices because
we anticipate that future social science research will exploit developments in
smart home technologies to assess people’s behaviors in their natural habitats.

Ubiquitous computing for person-environment research Chapter | 4
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4 Measuring and Modeling Persons and Situations

To provide a detailed overview of the types of person-environment inferences
that can be made from ubicomp devices, we present illustrative examples from
the literature in Table 1 along with information about the methodological de-
tails of the studies (e.g., sample size and duration, ground truth criterion, mod-
eling strategy).

The data collected from ubicomp technologies are typically used to develop
machine learning models that can predict behavioral, environmental, or per-
sonal characteristics. Empirical papers using ubicomp technologies and ma-
chine learning models use a wide variety of error metrics to assess model per-
formance. These error metrics are chiefly based on the type of outcome vari-
able being modeled (e.g., categorical vs continuous). Table 2 provides a brief
review of six commonly used error metrics in the machine learning literature
and provides examples of how the different error metrics apply to a prediction
model (using personality trait prediction as an illustrative example). In our il-
lustrative literature review, we use error metrics defined in Table 2 to offer
an indication of how successful different approaches have been in sensing the
three components of the Lewinian equation (e.g., behavior, personal character-
istics, and environments).

Measuring and modeling behaviors

To structure our discussion of the previous literature on behavioral sensing, we
organize the different behaviors that have been studied in the ubicomp literature
using a framework adapted from a previous review (Harari, Müller, Aung,
& Rentfrow, 2017): movement behaviors, social behaviors, and daily activity
behaviors.

Movement behaviors
Movement behaviors have been studied in two dominant ways in the litera-
ture: (i)constructing algorithms that can predict different types of movements
from accelerometer data (e.g., whether participants are walking or running),
or (ii) assessing the movement trajectories from GPS data (e.g., identifying
the route a person travels when visiting different locations). Inferring physi-
cal activity is primarily pursued through the analysis of inertial data produced
by inertial measurement unit (IMU) systems comprising accelerometers, gyro-
scopes, and magnetometers. These sensors are commonly found in modern-day
smartphones and smartwatches and generate three-dimensional coordinates of
the users’ movement as a function of time. GPS data can also augment IMU-de-
rived measures of physical movement by providing information about how
fast and in which direction participants are moving, which can be used to in-
fer the means of transportation. Researchers use computational techniques to
classify this raw data into meaningfully labeled behaviors, such as bicycling
or walking (Hemminki, Nurmi, & Tarkoma, 2013; Kwapisz, Weiss, &
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TABLE 1

Exemplar reference Sensing focus Sensors Data source Sample size Modeling technique Ground truth

Behavior

(Cho, Nam, Choi, &
Cho, 2008)

Movement based
behaviors

Accelerometer Wearables N=1; lab
setting

Support vector machine Activities performed

Ashbrook and Starner
(2003)

Movement based
behaviors

GPS Wearables N=6;
duration=7
months

Markov model No ground truth

Alfeo et al. (2018) Sleep duration and
quality

Accelerometer Wearables N=7;
duration=20
days

Unsupervised learning/
clustering

Self-report questionnaire

Marquardt, Verma,
Carter, and Traynor
(2011)

Typing behavior Accelerometer Smartphone N=1; lab
setting

Neural network Automatically logged by
phone

Harari et al., 2020 Nonmediated and
mediated social
interaction

Microphone, App Use Logs,
SMS Logs, Phone Call Logs

Smartphone N=926;
duration=
14–66 days

Unsupervised learning/
clustering

No ground truth

Yan, Yang, & Tapia,
2013

Nonmediated social
interaction

Bluetooth Smartphone N=145;
duration=2
months

Clustering Self-report questionnaire

Boase and Ling
(2013)

Phone use App Use Logs Smartphone N=1499;
duration=1
month

Correlation Self-report questionnaire
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(Zhou et al., 2015) Eating behavior Dish/plate based weight Smart-home
device

N=5; lab
setting

Adaboost machine
learning model

Experimentally
manipulated activity

Bi et al. (2016) Eating behavior Microphone Wearables N=12; lab
setting

Hidden Markov models
and decision trees

Manually labeled

Environment

(Brdiczka, Langet,
Maisonnasse, &
Crowley, 2008)

Social context Cameras, microphone Smart-home
device

N=3; lab
setting

Hidden Markov models Supervised
learning—labeled data

(Burns et al., 2011) Social context,
environmental
context

Accelerometer, Bluetooth,
WiFi Network, Metadata
Logs, App Use Logs

Smartphone N=8;
duration=8
weeks

Regression trees and
decision trees

Self-report questionnaire

(Corcoran, Zahnow, &
Assemi, 2018)

Social context Global Positioning System Smartphone N=3;
duration=14
days

Visual analytic
techniques

No ground truth

Aram, Troiano, and
Pasero (2012)

Temperature and
humidity

Thermometer, Bluetooth,
external temperature sensor,
external humidity sensor

Smartphone N=1;
duration=3h

Qualitative assessment Climate chamber–based
humidity and temperature
variations

(Ibekwe et al., 2016) Noisiness Microphone Wearables N=3;
duration=13
months

Pearson correlation Sound level meter

Person

Chittaranjan et al.
(2011)

Dispositional traits Bluetooth, App Use Logs,
Text Logs, Phone Call Logs

Smartphone N=117;
duration=17
months

Support vector machine Self-report questionnaire
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(Bogomolov, Lepri, &
Pianesi, 2013)

Happiness Bluetooth, Phone Call Logs,
SMS Logs

Smartphone N=117;
duration=17
months

Random forest classifier Self-report questionnaire

Kalimeri et al. (2019) Morals and values Web Browsing Activity and
App Use Logs

Smartphone and
desktop
computers

N=7633;
duration=1
month

Random forest classifier Self-report questionnaire

Kalimeri, Lepri, and
Pianesi (2013)

Momentary
personality states

Bluetooth, infrared,
microphone, Email

Wearables and
Email data

N=54;
duration=6
weeks

Support vector machine Self-report questionnaire

(Farhan et al., 2016) Depression GPS, accelerometer Smartphone N=79;
duration=5
months

Support vector machine Self-report questionnaire

Wang et al. (2018) Depression Light sensor, microphone,
accelerometer, GPS, heart-
rate, screen on/off

Wearables and
smartphone

N=83;
duration=18
weeks

Lasso regression Self-report questionnaire

(Malmi & Weber,
2016)

Demographic
characteristics

App Use Logs Smartphone N=3760;
duration=4
weeks

Logistic regression Self-report questionnaire

(Bogomolov et al.,
2014a)

Stress Bluetooth, PhoneCall Logs,
SMS Logs

Smartphone N=117;
duration=6
months

Random forest classifier Self-report questionnaire

.....
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Table 2

TABLE 2

Metric
Type of outcome
variable Definition Example

Accuracy Categorical Proportion of
cases correctly
predicted as
positive or
negative,
relative to the
total number of
cases

The number of cases that
were correctly predicted as
high extraversion and low
extraversion, divided by the
total number of observations
in the data

Precision Categorical Proportion of
predicted
positive cases
that are true
positives

The proportion of (a) cases
that were truly high
extraversion in the dataset,
relative to (b) the number of
cases that were predicted as
high extraversion by the
algorithm

Recall
(sensitivity in
the
psychological
literature)

Categorical Proportion of
true positive
cases that are
correctly
predicted as
positive

The proportion of (a) cases
that were predicted as high
extraversion by the
algorithm, relative to (b) the
number of cases that were
truly high extraversion in the
dataset. This can be thought
of as an “accuracy” measure
for all the high extraversion
cases in the dataset

F1 score Categorical A weighted
average of
precision and
recall.
Especially
useful when
there is an
imbalance of
class

A weighted average of
accuracy and precision
obtained for the extraversion
predictions
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Metric
Type of outcome
variable Definition Example

Root mean
square error

Continuous/ordinal The distance
between actual
values and
predicted values

A metric quantifying how
“off” each predicted value of
extraversion was relative to
the ground truth measure
(questionnaire) of
extraversion. Higher values
typically suggest that the
error is larger, implying poor
predictive performance

Pearson
correlation

Continuous/ordinal The Pearson
correlation
between the
predicted values
and actual
values in the
dataset

A metric quantifying how
closely related the predicted
values of extraversion are to
the actual values of
extraversion obtained
through the ground truth
measure. Higher values
suggest that the model is
more accurate at predicting
correct extraversion scores

Note: The exemplar problem is as follows: You have smartphone sensing data and Big 5 personality trait
scores that you collected from 100 college students in the department. You are constructing a machine
learning algorithm that can predict individual’s extraversion from their sensing data. Approach Number 1:
You are mainly interested in predicting if individuals are high in extraversion or low in extraversion. You
take the midpoint of the 1–5 scale, which is “3.” Any individual who is higher than 3 is classified as “high
extraversion” (denoted by 1) and “low extraversion” (denoted by 0). Approach Number 2: You are inter-
ested in predicting the raw ordinal scores of individuals’ extraversion levels. Definitions of error metrics
for the table above were adopted from (Powers, 2008). Accuracy, precision, recall, and F1 score can all
be applied models where the outcome variable is a nonbinary categorical variable. In these approaches, a
“one vs the rest” approach is taken. A full discussion of this approach is beyond the scope of the current
chapter. For more information, consult the resources (Pedregosa et al., 2011; scikit-learn 0.23.1,
2020).

Moore, 2011; Lester, Choudhury, & Borriello, 2006; Mannini, Intille,
Rosenberger, Sabatini, & Haskell, 2013; Mathie, Celler, Lovell, &
Coster, 2004; Wu, Feng, & Sun, 2018).

Wearables can also be used to classify movement behaviors. Research sug-
gests that wearables attached to the ankle discriminated between four differ-
ent types of bodily movements (e.g., ambulation, cycling, sedentary and other
activities; baseline accuracy for a four-class problem: 25%) with accuracies
higher than 95%, whereas these accuracies reduced by 10% when using data
collected from wrist-attached wearables (Mannini et al., 2013). These algo-
rithms rely on data collected from short duration time intervals (e.g., 12.8-s
windows: Mannini et al., 2013). Hence, in order to ensure the highest levels
of accuracy in the context of physical movements, researchers should consider
using multiple sources of information (e.g., accelerometer data obtained from

Ubiquitous computing for person-environment research Chapter | 4
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10 Measuring and Modeling Persons and Situations

both wearables and smartphones) to estimate durations that participants spent
engaged in different kinds of physical activity.

Trajectory-based mobility patterns are typically derived from the GPS sen-
sor data, which are commonly found in smartphones and wearables. These sen-
sors collect latitude and longitude data about the users’ location in real-time
using an ensemble of satellites orbiting the Earth. Researchers analyze this
time-based latitudinal and longitudinal data to glean meaningful insights about
how far the participants traveled in a day. For instance, Ashbrook and Starner
(2003) developed a means to identify significant locations for various users
by using unsupervised clustering algorithms to recognize areas that users were
spending a large majority of their time in (see Table 1 for more details). Unsu-
pervised algorithms detected underlying patterns in unlabeled data without the
need for having to “learn” from labeled data, which allowed the authors to iden-
tify locations that were significant to different users because the users spent the
bulk of their time in those locations. Subsequently, the authors used a Markov
model to predict which “significant” location their users were likely to loco-
mote to in the near future and were able to do so significantly above chance.
Hence, research suggests that the likelihood to move to specific locations in the
future can be predicted from past longitudinal and latitudinal data (Ashbrook
& Starner, 2003), a claim that has been corroborated by at least two other stud-
ies (Krumm & Rouhana, 2013; Krumm, Rouhana, & Chang, 2015).

Being able to assess people’s daily movements through different locations
offers social scientists with a unique tool that can be used to predict individu-
als’ academic performance. For instance, Wang, Ho, Chan, and Tse (2015)
collected location data from participants using two independent sources of data:
wi-fi location and GPS. Wi-fi location relies on scanning procedures that iden-
tify which access points are proximate to the users. The location of access
points was known and could be mapped onto the buildings that were in the
vicinity of different users. Hence, wi-fi scanning could reveal if individuals
were near different kinds of buildings (e.g., gym, fraternity house). The au-
thors also collected mobility trajectory data from the GPS sensor in student
smartphones, and combined the aggregated mobility trace data with a layer of
contextual information (e.g., dwell time—the amount of time spent at differ-
ent locations; activity—the amount of time spent stationary at different loca-
tions). When combined with other forms of sensed data such as sociability and
physical activity, the authors showed that the mobility traces of students could
predict their GPAs within an error margin of 0.179 of their actual reported
GPA. This research suggests that mobility trajectories, especially when com-
bined with other contextual information of different locations, contain a large
amount of salient information.
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Social behaviors
Social behaviors are broadly assessed in two different ways: (i) in-person social
interactions can be assessed with the microphone sensor (e.g., Rossi, Amft,
Feese, Käslin, & Tröster, 2013) and Bluetooth functionality (e.g., Chen et
al., 2014; Yan, Yang, & Tapia, 2013), and (ii) digitally-mediated social in-
teraction can be assessed from metadata logs that reflect phone calls, text mes-
saging, and application usage behaviors (Boase & Ling, 2013; Harari et al.,
2020; Lane et al., 2011; Wiese, Min, Hong, & Zimmerman, 2015; Yak-
oub et al., 2015).

Sensing of in-person social interactions is achieved from microphone data
by detecting the presence of voices (Mast, Gatica-Perez, Frauendorfer,
Nguyen, & Choudhury, 2015). Such inferences have been used to infer the
frequency and duration of ambient conversations surrounding an individual’s
device. For example, researchers have found a high correlation between mi-
crophone-sensed speaking duration and self-reported sociability (r2 =0.97; see
Table 2 of Berke, Choudhury, Ali, & Rabbi, 2011). Sensed conversations
can also be analyzed to predict a range of other relevant vocal features such
as pitch, speaking rate, and voice energy (Mast et al., 2015). Raw audio data
collected from microphones can also be used to assess the content of conversa-
tions (e.g., via the Electronically Activated Recorder; Mehl, 2017). Bluetooth
data is also used to infer how many other individuals with Bluetooth- embed-
ded devices are proximate to the individual (Atzmueller & Hilgenberg, 2013;
Chen et al., 2014; Eagle & Pentland, 2006; Mana et al., 2007; Moturu,
Khayal, Aharony, Pan, & Pentland, 2011; Yan, Yang, & Tapia, 2013).
For example, Eagle and Pentland (2006) demonstrated that Bluetooth func-
tionality can be used to infer the social lives of different individuals, using an
“entropy” based categorization mechanism that quantifies the extent to which
individuals’ social lives are structured or not (see Fig. 4 of Eagle & Pentland,
2006).

One notable limitation of these sensor-based approaches to assessing in-per-
son social interaction is that they are susceptible to false positives. As data
is primarily collected from always-on sensors, one could be working in isola-
tion in a café or a public space but be surrounded by other socializing indi-
viduals. Hence, sensor-based approaches will provide data on a nonsocializing
participant that will be interpreted as the participant’s socializing behavior. In
this scenario, the phone of the participant will detect durations and frequen-
cies of sociability from the surrounding conversations, even though the individ-
ual of interest is working in isolation, creating a false positive measurement.
Moreover, the precise nature of socializing taking place (e.g., the size of a so-
cial group, turn taking in conversations) is not typically captured by frequen-
cies and durations of captured ambient conversations. Future research can ad-
dress this by developing algorithms that can glean inferences about the number

Ubiquitous computing for person-environment research Chapter | 4
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12 Measuring and Modeling Persons and Situations

of different voices detected ambiently, and whether the participant’s own voice
is being recorded amid those conversations as more representative metrics for
in-person social behaviors (Mast et al., 2015).

Sensing of digitally-mediated social interactions is achieved by relying on
metadata logs from phone calls, text messages, and application usage (Chit-
taranjan, Blom, & Gatica-Perez, 2011, 2013; Harari et al., 2020; Stachl
et al., 2020). For example, in Harari et al., 2020 the researchers analyzed
individual differences in young adults’ calling (i.e., frequency and duration of
incoming and outgoing calls), text messaging (i.e., frequency and length of in-
coming and outgoing text messages), and app usage behaviors (i.e., frequency
and duration of using various social media and communication apps) to show
that these behaviors show a high degree of between-person variability and sta-
bility across days. Moreover, the sensed daily behavioral tendencies of individ-
uals mapped onto their self-reported personality traits (e.g., Extraversion cor-
related positively with various social behaviors; Harari et al., 2020). Impor-
tantly, the assessment of mediated social behaviors is relatively insulated from
false positives (as compared to assessments of in-person sociability) because
these estimates are based on event log data, which reflect objective behavioral
observation records stored by the phone’s system logs.

Daily activity behaviors
Research in this domain has largely focused on classifying various kinds of
lifestyle activities that reflect health and recreational behaviors. Here we fo-
cus on past research on cigarette smoking, alcohol consumption, sleeping,
and eating behavior. Cigarette smoking can be detected using data collected
from two sensors (accelerometer and gyroscope) with a precision of up to
86% (Lopez-Meyer, Tiffany, & Sazonov, 2012; Morriscey, Shephard,
Houdt, Kerr, & Barrett, 2018; Skinner, Stone, Doughty, & Munafò,
2019). The detection of cigarette smoking is achieved using inertial sensors
attached to wrist-worn wearables that detect hand movements typically as-
sociated with smoking gestures, and thereby infer periods when the user is
likely to be smoking. For instance, some accelerometers use the piezoelec-
tric effect, which is generated by microscopic crystals that generate electric-
ity when they are stressed by movements. Hence, every time a user is mov-
ing her wrist, the accelerometer can detect the acceleration with which the
hand is moving, which can be analyzed to predict instances of smoking be-
havior. These approaches typically rely on ecological momentary assessment
(EMA) data collected from participants in order to label data that is used to train
machine learning algorithms to predict smoking instances. Cigarette-smok-
ing detections can be subsequently used to stage timely interventions in or-
der to discourage the user from smoking (Dar, 2017; Lopez-Meyer et al.,
2012; Morriscey, Shephard, Houdt, Kerr, & Barrett, 2018). Using sim-
ilar accelerometer-based approaches, drinking-related activities can also be
assessed using data collected from mobile device sensors and
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EMAs (e.g., typically used as a ground truth measure: Arnold, Larose, &
Agu, 2015; Bae et al., 2017; Chun et al., 2019; Gharani, Suffoletto,
Chung, & Karimi, 2017; Gutierrez, Fast, Ngu, & Gao, 2015; Poulton,
Pan, Bruns, Sinnott, & Hester, 2018). For example, Bae et al. (2017)
used sensing data to predict “nondrinking,” “drinking,” and “heavy drinking”
episodes with 96.6% accuracy, where the baseline level of accuracy was 33.3%
(baseline accuracy of a three-class problem).

Sleeping behavior can also be assessed using data collected from smart-
watches and smartphones. The smartwatch has been a particularly popular
means of automating the detection of sleeping patterns (e.g., see Table 1
for more detail: Alfeo et al., 2018). For instance, Rios-Aguilar, Merino,
Millán Sánchez, and Sánchez Valdivieso (2015) collected data from four
smartwatch sensors (the heart-rate monitor, pedometer, gyroscope, and ac-
celerometer) with the intention of developing a sleep-detection algorithm that
could identify drowsiness in drivers. The smartwatch heart rate monitor used
light-based mechanisms to detect the “rate of blood flow” in the users’ wrists.
The pedometer was used to detect the number of steps the user had taken,
whereas the gyroscope and accelerometer function was used to detect relevant
bodily movements such as excitation, sleepiness, and slumber. By using paral-
lel data collection mechanisms for the sensing of a complex behavior (e.g., deep
sleep), the authors were able to drastically reduce the number of false-positive
predictions that are generated and only alert the driver of potential drowsiness if
both the heart-rate sensor and the movement sensors concurrently make a posi-
tive prediction.

Other research is concerned with maximizing the accuracy of sleep predic-
tion algorithms using data collected from smartphone sensors and metadata logs
(e.g., Abdullah, Matthews, Murnane, Gay, & Choudhury, 2014; Ciman &
Wac, 2019). For instance, predictions of sleep quality have yielded accuracies
of up to 94.52% using sensor data generated smartphones, where the baseline
accuracy was 42.29% (see Table 1 of the present chapter; see Table 3 of Min
et al., 2014). The researchers relied on capturing smartphone sensor data to
assess the quality and duration of their sleep. The researchers tested their al-
gorithm with 27 participants, in a study that spanned 1 month, suggesting that
their algorithm offers a robust method to predict sleeping behavior from rela-
tively sparse traces of metadata.

Emerging activity sensing research has highlighted that digital media ac-
tivities (i.e., how people use their devices), and typing behavior, in particular,
can be sensed with a high level of accuracy using mobile sensors. For exam-
ple, Miluzzo, Varshavsky, Balakrishnan, and Choudhury (2012) used data
generated from smartphone accelerometers to infer which keys users were tap-
ping on their virtual keyboards. As tapping the smartphone at different loca-
tions on the touchscreen causes the smartphone to move in different kinds of
ways, algorithms can be constructed to infer the exact key on the virtual key-
board that was tapped, based on data collected by the accelerometer on the
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movement of the phone resulting from each touch. Using a similar approach,
Marquardt, Verma, Carter, and Traynor (2011) showed in a proof-of-con-
cept style study that a smartphone’s accelerometer can not only sense typing ac-
tivity on its own device but also it can also detect specific keystrokes made on
external keyboards placed proximately to the device. The authors collected data
from a smartphone that was placed adjacent to a mechanical keyboard (without
touching it). The vibrations made by typing on the mechanical keyboard rever-
berated through the common surface upon which both the phone and the key-
board were placed. The vibrations made on the common surface that the me-
chanical keyboard and smartphone were placed on varied systematically when
different words were being typed. The smartphone accelerometer detected this
movement data, which was analyzed using supervised machine learning tech-
niques to predict words typed into the mechanical keyboard with an accuracy of
up to 80% (an 80% accuracy suggests that 80% of all the words could be cor-
rectly inferred—see Table 1 for more details: Marquardt et al., 2011). Impor-
tantly, however, the authors did not test the efficacy of the model in a feasibil-
ity study with numerous participants and phones, implying that these findings
might not be easily generalized.

Eating behavior has also received attention from ubicomp researchers, with
a focus on eating detection and food recognition. Wearables can capture the
audiovisual properties of food-type and their subsequent consumption using
cameras and microphones. For instance, more solid food-types require more
frequent and distinct chewing behavior as compared to sipping a liquid—dif-
ferences which can be detected acoustically from microphones (see Table 1
for more details: Bi et al., 2016) and visually from cameras. Hence, audio-
visual data can be analyzed using machine learning technology to infer eat-
ing behavior with high recall (89%) and precision (92%) values (e.g., see
Merck et al., 2016) suggesting that convergent approaches (e.g., utilizing mul-
timodal data from the camera and the microphone) are most effective to pre-
dict eating behavior (Merck et al., 2016; Mirtchouk, Merck, & Kleinberg,
2016; Thomaz, Essa, & Abowd, 2015; Vu, Lin, Alshurafa, & Xu, 2017).
Simpler, unimodal approaches that utilize off-the-shelf hardware such as con-
sumer-grade smartwatches have also been used to predict instances of eating
behavior. For instance, Thomaz et al. (2015) used a consumer-grade smart-
watch to predict instances when individuals were eating with F-scores rang-
ing from 71.3% to 76.1%, primarily by relying on systematic differences in
the hand movement data of the participants, as detected by the smartwatch (see
Table 1 for more details).

Researchers have also developed smart-home technologies that can predict
the type of food consumed and method of food consumption using variations
in the weight of foodstuff as measured constantly through smart-home devices.
For example, smart table devices have been used to recognize actions related
to food-intake, such as the utensils being used to consume the food and the
changes in the weight of the food as it continues to get consumed, providing
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information about the kind of food being eaten (e.g., whether it is a “hard” food-
stuff such as steak that needs to be cut or whether it is a “soft” foodstuff that
involves stirring) and the way in which it is being consumed (e.g., whether the
foodstuff is being cut or stirred; (Zhou et al., 2015)) (see Table 1 for more
details).

Measuring and modeling persons

The assessment of personal characteristics (i.e., psychological traits and states)
is an active area of research in the ubicomp community. A range of scholars
have leveraged machine learning models to assess psychological characteristics
(e.g., Big Five traits, well-being) and states (e.g., personality states, other cog-
nitive states) using sensor data and metadata collected from ubicomp devices.

Psychological characteristics
Several studies suggest that personality traits and well-being characteristics
of individuals can be inferred using an individual’s smartphone data. Several
studies have sought to predict the Big Five trait standings of individuals us-
ing machine learning techniques that are applied to behavioral data collected
from smartphones (e.g., from social interactions derived from phone logs; Chit-
taranjan et al., 2011, 2013; de Montjoye et al., 2013; (Mønsted, Moll-
gaard, & Mathiesen, 2018; Stachl et al., 2020; Wang et al., 2014)). In
these studies, personality traits are assessed through validated self-report ques-
tionnaires, which are completed by participants at some point during the study
period and are used as the ground truth for the prediction models. Some of these
studies have created a binary or ternary classification (e.g., “high” vs “low”;
“high” vs “medium” vs “low,” respectively) of the personality scores, using
a central-tendency-based threshold (i.e., mean, median). Participants’ standing
on these classifications are then predicted using supervised machine learning
models (Chittaranjan et al., 2011, 2013; de Montjoye et al., 2013; Møn-
sted, Mollgaard, & Mathiesen, 2018; Wang et al., 2014). In most cases,
50% accuracy is treated as the baseline accuracy, as binary classifications cre-
ated around the median tendency of the sample necessarily result in 50% “high”
ratings and 50% “low” ratings of participants. Similarly, unless reported oth-
erwise, the baseline accuracy for three-class problems can be considered as
33.3%. Hence, for binary classifications, trait-specific prediction accuracies of
50% or below are accuracies that are “worse than chance,” whereas trait-spe-
cific prediction accuracies higher than 50% are accuracies that are “better than
chance” (see Table 2). These studies have reported varying accuracies in pre-
dicting Big Five trait standings, with accuracies across traits maximizing at
75.9%, and minimizing in the range between 50% and 60% (see Table 1 for
more details).
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While studies have reported high accuracy in classifying Big Five person-
ality traits, more recent research with larger sample sizes collected over longer
durations of time have yielded mixed results, finding that only Extraversion can
be predicted robustly, followed by Agreeableness and Neuroticism (Mønsted
et al., 2018). Conversely, Conscientiousness and Openness appear to be more
difficult to predict with higher levels of accuracy (see Table 1 for more de-
tails: Mønsted et al., 2018). Similarly, Stachl et al., 2020 used a sample of
743 participants, who participated in a 30-day long smartphone study, to pre-
dict participants’ standing on the Big Five personality framework. Specifically,
instead of predicting whether individuals were “high” or “low” on specific per-
sonality traits, the researchers were specifically focused on predicting the raw
personality score at the factor and facet level. The researchers found mixed
results, with Extraversion, Openness, and Conscientiousness being accurately
predicted above the baseline. By computing correlations between predicted per-
sonality scores and actual personality scores, the authors found medium-sized
effects for three of the Big Five Traits (r values: 0.37 for Extraversion, 0.29
for Openness, 0.31 for Conscientiousness; see Table 4 of Stachl et al., 2020).
Single facets of Neuroticism were successfully predicted above chance with
low to medium effect size (r values ranging from 0.20 for the self-control facet
to 0.32 for the self-consciousness facet; see Table 4 of Stachl et al., 2020).
Conversely, Agreeableness could not be predicted accurately from the dataset
(r-value: 0.05, see Table 4 of Stachl et al., 2020).

Collectively, the recent literature has emphasized the use of large and di-
verse samples using standardized methodologies of machine learning analysis
in order to produce personality sensing findings with greater replicability as
past work has typically relied on small, homogenous samples to train predictive
algorithm (Mønsted et al., 2018). Two factors might be influencing levels of
accuracies with which Big Five personality traits can be predicted: (1) the ex-
tent to which a specific trait result in behavioral differences, and (2) the extent
to which a specific trait results in behavioral differences that can be detected by
smartphones. For example, higher levels of extraversion should result in more
engagement in sociability behaviors that are easily detected by smartphone sen-
sors and metadata logs. In contrast, agreeableness and neuroticism are traits that
may better reflect patterns of thinking and feeling (more so than observable be-
haviors), which may lead to less signal between smartphone data and these sur-
vey measures.

While most of the automatic personality prediction literature is focused on
using smartphone data to predict traits of the Big Five model, a recent study at-
tempted to diversify the sources of data used to include other forms of digital
media use (e.g., websites visited, patterns of emailing behavior) and the types
of predicted individual differences (i.e., demographics, values, and moral ten-
dencies; Kalimeri et al., 2019). Specifically, the researchers collected data
pertaining to websites visited and applications used across the smartphone
and desktop computers, and also collected self-reported assessments measuring
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moral traits and human values from a large sample of participants (n=7633).
The researchers then used supervised machine learning approaches to predict
the moral trait and human value tendencies from data capturing website visits
and application usages across the desktop computer and smartphones of all the
participants. The researchers found that individuals’ high/low standing on var-
ious traits of morality could be predicted with low-to-medium accuracy from
digital behavior data, ranging from a maximum of 0.67 for purity and a mini-
mum of 0.58 for fairness. All reported accuracies were compared to a baseline
accuracy of 0.5. Different moral foundations and values were predicted by in-
creased usage of different websites and applications. For instance, purity (moral
foundation) was positively predicted by the usage of the Bible application, the
Yelp application, and Google use, whereas loyalty (moral foundation) was posi-
tively predicted by the use of americanexpress.com, Gmail, and Instagram. Val-
ues such as benevolence were predicted by the use of eBay and the Weather
application, whereas other values such as openness were predicted by the usage
of Snapchat, Instagram, and Facebook. Similarly, the demographic character-
istics of the users could be predicted with high accuracies: ranging from age
(0.71), marital status (0.67) to having weight issues (0.62), relying on features
such as LinkedIn use (for education), Map applications (for political party af-
filiation), Youtube use (for wealth) and Gmail (for marital status: Kalimeri et
al., 2019). Collectively, emerging research suggests that a variety of individ-
ual differences, extending beyond the popular Big Five Model and including
demographic characteristics, can be predicted using data obtained from com-
puting devices such as smartphones and desktop computers (Al-Zuabi, Jafar,
& Aljoumaa, 2019; Kalimeri et al., 2019; Qin et al., 2014; Seneviratne,
Seneviratne, Mohapatra, & Mahanti, 2014; Wang, Harari, Hao, Zhou, &
Campbell, 2015).

Various measures of mental well-being, such as depression and anxiety,
have also been predicted from data collected by mobile sensing devices. Re-
search has shown that the fluctuation of weekly depression scores over the
course of an academic semester can be predicted by smartphone and wear-
able sensing data, using mixed linear models as well as machine learning ap-
proaches, with 81.5% recall and 69.1% precision (Wang et al., 2018). The
authors collected data from 83 undergraduate students over two 9-week terms,
suggesting that their algorithms were trained on expansive, large-scale datasets
that increased the external validity of the researchers’ findings. Two other per-
tinent papers examined if mental disorders could be predicted from data col-
lected through the smartphone. Abdullah, Matthews, et al. (2016) collected
mobile sensing data (e.g., from the accelerometer, microphone, location, and
“communication information”) and experience sampling data (e.g., collected
using clinically validated questionnaires) from seven patients diagnosed with
bipolar disorder. The researchers found that they were able to predict the So-
cial Rhythm Metric, a clinically validated tool to gauge the phases of bipolar
individuals, with a precision of 0.85 and a recall of 0.86. Similarly, another re
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search effort collected smartphone sensing data from 21 schizophrenic patients
for a duration ranging from 2 to 8.5 months (Wang et al., 2016), finding that
there were several statistically robust correlations between smartphone sensed
activities (e.g., sleep, sociability, digital media usage) and self-reported re-
sponses pertaining to schizophrenia. The researchers found that developing per-
sonalized algorithms for each participant leads to high correlations between
predicted self-report symptoms and actual self-report symptoms (r-value=0.77,
see Fig. 5 of Wang et al., 2016). This suggests that symptoms of schizophrenia
can be automatically detected using smartphone sensing data, especially when
algorithms are developed for and trained on the data of individual participants
(Wang et al., 2016).

Psychological states
Research has also examined how more transient characteristics related to peo-
ple’s thoughts, feelings, and behaviors in the moment can be predicted from
data derived from ubicomp devices. While only a handful of studies have
focused on predicting individuals’ momentary psychological states, the ini-
tial work has been encouraging. Sensing data collected through wearable de-
vices has been used to predict personality states (Kalimeri, Lepri, & Pianesi,
2013). The authors conceptualized personality states as the situation-specific
manifestations of behaviors pertinent to the Big Five traits, as formalized in
Fleeson’s Density Distribution approach (Fleeson, 2001). Specifically, the
participants completed a state version of the Ten-Item Personality Inventory
(TIPI; Gosling, Rentfrow, & Swann, 2003) a total of three times each day
for a total of 6 days, reporting their personality states for the half an hour pre-
ceding the completion of the questionnaire. The scores on the TIPI scales were
subsequently classified into three categories: low, medium, and high. Mobile
sensors collected data about participants’ speech, their movements, and their
vicinity to and interactions with other participants with sociometric badges.
The authors found that extraversion and emotional stability showed the high-
est predicted accuracies (0.60 and 0.71, respectively), whereas predicted ac-
curacies for agreeableness, conscientiousness, and openness were lower (0.55,
0.59, and 0.56, respectively) (see Table 1 for more details: Kalimeri et al.,
2013). These accuracies were greater than the baseline accuracy of 0.33, given
that there were three classes in the outcome variable. Random predictions into
one of the three classes should yield an accuracy of 0.33, whereas the authors
observed higher accuracies using their model. A key finding of the authors
was the introduction of social context in the analysis: instead of merely us-
ing a participants’ own sensor data to predict their personality states, the au-
thors also created variables that captured sensor-based activity levels for all the
different individuals that the specific participants’ interacted with through the
course of the study. That is, the authors used behavioral signatures of the peo-
ple that the participants interacted with during the course of the study to pre
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dict the personality states of each person, finding that these features were espe-
cially predictive for some types of personality states over others. For example,
consider participant A who interacted with four other individuals (B, C, and
D). The authors introduced the behavioral activities of individuals B, C, and D
as predictors of A’s personality states, finding that this approach increased the
accuracy of their findings. The finding suggested that some personality states,
such as conscientiousness are especially reliant on social context for predictive
accuracy, whereas others such as extraversion are not.

Cognitive states
Here, the we use the term “cognitive state” to describe constructs such as
alertness, stress, and attention. Recent research has sought to model cognitive
states such as alertness using data generated from smartphones, primarily in
settings geared toward pedestrians and/or operators of vehicles (e.g., Abdul-
lah, Murnane, et al., 2016; Al-Libawy, Al-Ataby, Al-Nuaimy, Al-Taee,
& Al-Jubouri, 2016; Grant, Honn, Layton, Riedy, & Van Dongen, 2017;
Manasseh, Fallah, Sengupta, & Misener, 2010; Murnane et al., 2016; Van
Devender & Shang, 2013). For example, Abdullah, Murnane, et al. (2016)
modeled the cognitive construct of “alertness” using the data generated from
the users’ mobile phones (see Table 1 for more details). The authors used Psy-
chomotor Vigilance Task (PVT), a widely used reaction time task (Dinges &
Powell, 1985), to assess patterns of change in the participants’ mental alert-
ness. They collected alertness and phone usage data from 20 participants over
40 days. The authors treat “alertness” as a key factor underlying cognitive per-
formance, and operationalize it in terms of the response time of participants to
the dynamic stimuli present into the psychomotor vigilance task. The authors
found that alertness (e.g., response times of the psychomotor vigilance task)
can be predicted with low root-mean square errors by features of phone use
(e.g., average amount time elapsed between subsequent phone usage sessions,
phone usage duration, the frequency with which the phone was used for short
sessions), in addition to other features such as self-reported stimulant intake,
self-reported concentration rating, and self-reported need to sleep.

Other researchers have also focused on predicting multidimensional con-
cepts like stress using similar data streams (see Table 1 for more details: Al-
berdi, Aztiria, & Basarab, 2016; Bogomolov, Lepri, Ferron, Pianesi, &
Pentland, 2014a; Ferdous, Osmani, & Mayora, 2015). Bogomolov et al.
(2012) used machine learning techniques to predict daily stress levels from the
participants’ smartphone data (consisting of metadata logs), their personality
traits, and weather metrics specific to the days encompassing the study. The
participants responded to daily questionnaires about their stress levels, which
were then bifurcated into “high” stress and “low” stress categories based on
the midpoint of the scale. The authors were able to predict daily levels of
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stress with an accuracy of 0.72 which was significantly greater than the baseline
of 0.64. The baseline was higher than 0.50 in this case because units of mea-
surement were classified as high or low based on the scale, as opposed to the
central tendency of the sample. Hence, the author’s model performed signifi-
cantly better than chance at predicting the stress levels of the participants (Bo-
gomolov, Lepri, Ferron, Pianesi, & Pentland, 2014b). The incorporation of
behavioral, environmental, and personality characteristics into one framework
to predict daily stress highlights the empirical utility of operationalizing all the
components of the Lewinian equation to strengthen the performance of machine
learning models.

Measuring and modeling environments

The assessment of environmental factors from mobile sensors has historically
received less attention than the modeling of behavioral and person-related con-
structs. However, researchers are becoming increasingly interested in better un-
derstanding environmental factors from device data. Many technical scholars
treat behavior and context interchangeably (e.g., predicting eating behavior is
akin to inferring an eating context), so here we focus on those illustrative exam-
ples that conceptualize environments as more than just behaviors (e.g., features
of the environment that are independent of the person).

Physical properties of environments
Scholars have focused on sensing diverse environmental variables (e.g., humid-
ity, noise) from ubicomp devices (Aram, Troiano, & Pasero, 2012; Lane,
Georgiev, & Qendro, 2015; Panjaitan, Fratama, Hartoyo, & Kurnianto,
2016; Shah & Mishra, 2016). This research has typically relied on novel an-
alytic techniques and externally attached sensors to assess the physical char-
acteristics of environments, such as humidity and temperature. For instance,
Aram et al. (2012) developed an external temperature and humidity sensing
system that communicated to an Android smartphone using Bluetooth func-
tionality (see Table 1 for more details). The authors demonstrated the func-
tionality of this system by attaching the external system in a highly controlled
climatic chamber and showed that resulting changes caused in the climate
chamber were successfully recorded by the sensing component and communi-
cated to the smartphone using Bluetooth technology. As conventional smart-
phones lack the capability to detect both temperature and humidity indepen-
dently, the authors’ work offers novel approaches to supplementing the sens-
ing capabilities of smartphones. Similarly, other physical properties of the en-
vironment that are directly consequential for psychological processes can also
be detected from the smartphone. For instance, researchers have attempted
to predict noisiness levels from data collected through the smartphone mi-
crophone (Qin & Zhu, 2016; Santini, Ostermaier, & Adelmann, 2009).
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These approaches use machine learning approaches on microphone data to cre-
ate indices of noisiness in the surrounding environment of participants, suggest-
ing that this information can be gleaned by researchers interested in the acoustic
ambience of environments as a variable of interest. The physical characteris-
tics discussed in this section can be sensed through mobile sensors, and sub-
sequently used in the construction of more complex contextual measures that
capture the intricacies of the environment that surround a person.

Location-based context

In the section on movement behaviors earlier in the chapter, we discussed how
GPS-based metrics can be used to infer mobility patterns as a person travels
about their environment. Here, we now focus on research that uses GPS data
to assess locations and their characteristics as a key environmental variable of
interest. The kinds of locations that participants visit and the amounts of time
they spend at specific locations can be inferred from data collected by the GPS
(Cao, Cong, & Jensen, 2010; Lin & Hsu, 2014; Zheng, Zhang, Xie, & Ma,
2009). GPS data can be supplemented with classifications of different locations
into broad level typologies (e.g., café, bar), to infer insights about the kinds of
locations participants spend their time in. Related research has also used GPS
data to determine the location of users, and hence make inferences about the
context that participants are surrounded in Mehrotra et al. (2017), Müller et
al. (2017), and Sandstrom, Lathia, Mascolo, and Rentfrow (2017). This
research has focused on enriching GPS data with location-specific ratings pro-
vided by human raters, capturing characteristics such as ambiance of the place
(e.g., the extent to which the place was perceived as safe, urban, and lively)
and the personality of a place (e.g., the extent to which a place was perceived
as “extraverted” and “conscientious”) (Müller et al., 2017). This type of ap-
proach points to interesting ways of further enriching GPS data to gain novel
insights into physical environments.

Furthermore, this information can be further enriched with participant-de-
rived ratings of these different locations to understand the psychological signif-
icance of different locations. For instance, participants can be prompted to an-
swer ecological momentary assessments when they are at different locations, so
researchers can collect and aggregate psychological data pertaining to a range
of different locations (Müller et al., 2017). This data can then be used to un-
derstand the psychological context which envelopes different places, allowing
for social scientists to examine how a place’s psychological characteristics in-
teract with the psychological characteristics of different people to engender be-
havior.

Technical researchers have focused on combining the most recent forms of
sensing technology to characterize the human location, movement, and context
variables (Pei et al., 2013; Vaizman, Ellis, & Lanckriet, 2017). Sophisti-
cated context sensing can be accomplished by combining location-based and

Ubiquitous computing for person-environment research Chapter | 4



UN
CO

RR
EC

TE
D

PR
OO

F

22 Measuring and Modeling Persons and Situations

activity-based findings. For example, one group of researchers focused on
defining six different complex contexts (e.g., getting coffee, getting water, hav-
ing lunch, taking a break) using different combinations of location-changes and
movement behaviors (Pei et al., 2013). Fetching coffee, for example, was de-
composed to a sequence of location changes: from office to corridor to main
lobby, and then in reverse till the participant is back at the office with the cof-
fee. Such trajectories were punctuated by physical movements: standing from
one’s desk, then walking briskly to the lobby, then standing again near the cof-
fee machine, then walking briskly back to the office and sitting back down. As
both location and movement-based features are sensed from the smartphone,
these data could be combined to predict which complex context participants
were engaging in. Using this approach, the authors were able to discriminate
engagement in different behaviors within locations with accuracies up to 90.3%
(Pei et al., 2013).

Outlook
Our illustrative review highlights how the widespread diffusion of ubicomp
devices presents new opportunities and challenges for conducting person-en-
vironment research. On the one hand, it is clear that the mobile sensors and
metadata logs present in ubicomp devices offer novel approaches for measur-
ing and modeling of behaviors, persons, and environments. The development of
these new forms of ambulatory assessment alleviates weaknesses of more tra-
ditional methods (e.g., self-report–based studies) by nonintrusively collecting
data about all three elements of the Lewinian equation as the daily life of the
individual unfolds. Moreover, advances in analytic techniques, such as those
offered by the development of powerful machine learning algorithms, allows
for the generation of inferences or predictions about the person, their behaviors,
and their environment.

On the other hand, social scientists may find it difficult to adopt ubicomp
devices as an approach to ambulatory assessment given the technical complex-
ity that typically is associated with deploying these data collection methods.
Moreover, most of the research to date has been focused within more techno-
logically-oriented research communities (e.g., computer science, engineering
sciences) and has been developed and packaged primarily to cater to other tech-
nical researchers. Thus, for ubicomp devices to truly become integrated into
psychological science, future work must focus on creating open-source soft-
ware and analytic suites that are easily deployable by nontechnical researchers
in the social sciences. Such tools would lay the foundation for a field of re-
search focused on sensing in psychological science. To contribute to such a
foundation, below we offer practical and ethical considerations for social sci-
entists getting started in this domain of research and conclude by pointing to
future directions for research using smartphones, wearables, and smart home
devices.
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Practical considerations

In terms of practical considerations, here we focus on issues relevant to the fol-
lowing: cross-disciplinary training, the standardization of data collection and
analysis tools, creating cross-disciplinary intellectual communities, providing
suggestions for data collection logistics, data wrangling and analysis, and sam-
pling and participant considerations.

Cross-disciplinary training and intellectual communities
First, social scientists will have to adapt to the technical sophistication of the
methods at hand because of the sophistication of data collection technologies
and the resulting complexities of data wrangling and analyses that are war-
ranted. Social scientists traditionally lack training in computer science con-
cepts (e.g., deployment of servers, cloud-based application set-up, workings of
a smartphone) and data science methods (e.g., data wrangling methods for “big”
datasets, machine learning methods, cross-validation techniques) that are im-
portant for ubicomp research that heavily relies on both these forms of exper-
tise. Systemized educational programs should urge a movement towards “com-
putational social science” that galvanizes traditional social science training with
technical training in order to better familiarize the next generation of social sci-
entists with ubicomp research. Such a level of cross-disciplinary graduate train-
ing will facilitate the development of commonly accepted research protocols
that standardize the various components of the research process across different
laboratories, thereby enabling the implementation of a more open science and
efficient communication across disciplines.

Similarly, ubicomp researchers will need to make their content more ac-
cessible to researchers whose’ expertise is different from their own, in or-
der to stimulate a culture of multidisciplinary collaboration and cross-dis-
ciplinary collaboration. By facilitating the rapid communication of relevant
technical literature to social scientists, both technical and nontechnical re-
searchers will benefit from conversations about usability and applications. As
the next generation of social scientists and technologists will be handling im-
mensely large datasets containing granular, multimodal, and time-contingent
data about user behaviors, it is essential that future work addresses this knowl-
edge gap through the publication of detailed tutorials that introduce novices
to these computational methods (for example of a tutorial using Facebook
data, see Kosinski, Wang, Lakkaraju, & Leskovec, 2016). Existing initia-
tives to bring together cross-disciplinary scholars interested in mobile sens-
ing research, such as the Life Sensing Consortium (https://lifesensingconsor-
tium.org/), will need to direct attention to developing ubicomp research proto-
cols that can be implemented with ease by a range of scholars from different
backgrounds. Such standardization of research and privacy-related protocols
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will allow diverse researchers to conduct behavioral science research that is re-
producible, replicable, and that fully exploits the potential of ubicomp devices.

Standardization of data collection and analysis tools
Psychologists will have to converge on an Open Science protocol for conduct-
ing ubicomp research in order to ensure that their research is reproducible and
generates findings that are more likely to replicate amongst the larger research
landscape. Recent years have seen a growth in the Open Science Framework
and accompanying preregistration protocols that different types of empirical pa-
pers can adapt to. These kinds of protocol templates should also be developed
from sensing studies in order to facilitate a common preregistration mechanism
that new studies in this space can use to present their scientific aims and hy-
potheses. Specifically, standardization should be implemented along with the
different components of the research life-cycle. Data collection procedures de-
ployed in ubicomp research are substantially more complex than methods that
psychologists have traditionally used in their research. Similarly, ubicomp re-
searchers typically vary widely in their use of statistical procedures to analyze
their data, and tend to be focused on developing models that predict outcomes,
as opposed to traditional psychological statistics that are focused on inference
(e.g., feature engineering of machine learning algorithms as compared to run-
ning simple linear regressions). These gulfs in data collection and analytical
procedures can be closed by the development of standardized and widely ac-
cepted open science policies. The adoption of these policies will further gal-
vanize researchers to report replicable findings using materials and analytical
scripts that are available to all. This standardization process has already begun
by researchers leading the Open MHealth initiative that aims to dispense “open
data standard(s) and tools to change how patient-generated health data is used”
(https://www.openmhealth.org/).

Furthermore, technical researchers building predictive algorithms tend to
operationalize accuracy using a range of different error metrics (see Table 2
for commonly used metrics). This plurality of error metrics makes it partic-
ularly difficult to compare the accuracies of different studies focused on the
prediction of common variables (e.g., personality traits). Cross-study compar-
isons are further hindered by a lack of baseline accuracy metrics—different
studies typically tend to have their own baselines based on the distribution of
their data. These weaknesses can be alleviated by convergence towards a par-
ticular, effective accuracy metric (e.g., recall—see Table 2 for more details).
Researchers can also develop customary baseline datasets that can be used to
generate baseline accuracies that can be compared across studies. For instance,
all personality prediction algorithms can be tested on a common dataset to
compare their performance levels (e.g., Mønsted et al., 2018 test their per-
sonality prediction algorithm on previous personality datasets to establish a
performance benchmark). These types of analyses can facilitate comparisons

https://www.openmhealth.org/
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of algorithms and their performance across studies and further delineate which
features are especially important for the prediction of a given outcome.

Suggestions for data collection logistics
Social science researchers who have not yet been exposed to ubicomp studies
can get started with technical research using relatively easy-to-use, open-source
software suites or by commercial applications and services that researchers
can use to outsource the entire data collection process. As the bulk of ubi-
comp research is currently focused on the smartphone, we recommend that
this is a good starting point to enter this methodological domain. Several tech-
nical researchers have created data collection software for smartphone-based
sensing studies. For example, open-source tools that can be used for deploy-
ing smartphone sensing studies include the Beiwe Research Platform (Torous,
Kiang, Lorme, & Onnela, 2016), AWARE platforms (Ferreira, Kostakos,
& Dey, 2015), Sensus platform (Xiong, Huang, Barnes, & Gerber, 2016),
and mCerebrum (Hossain et al., 2017). Such platforms are developed by re-
search groups at universities and are designed to allow researchers to set up
a mobile sensing data collection platform on a server with relatively minimal
technical expertise. Some platforms include a researcher-facing user interface
that makes the software easier to use for study setup and deployment (e.g., per-
mitting researchers to create new studies, specify the types of data to collect,
and manage participants). One of the benefits of open-source platforms is they
are typically accompanied by detailed information about how the system works
and/or include tutorial materials that outline how to set up and deploy the soft-
ware. Based on the current training paradigms of most social science gradu-
ate programs, the majority of researchers interested in using these tools will
still need to consult with technical researchers or support staff to complete the
set-up of the system and run their studies. For a more concrete discussion of
considerations when setting up a smartphone sensing study, we point interested
readers to two review articles that summarize the main opportunities and logis-
tical challenges (Harari et al., 2016; Lane et al., 2010). Within the current
sensing research landscape, open-source platforms are more transparent about
the way their systems work, while commercial-based platforms (e.g., Ksana
Health, Ethica Data) are generally easier to use because researchers can pay the
company to handle all the technical components of their study.

Sensing studies are typically time-intensive and expensive with respect to
data collection efforts, and can vary drastically in costs based on the types of
instrumentation needed (e.g., purchasing software, devices), strategy for man-
agement of the studies (e.g., recruiting, incentivizing, and communicating with
participants), study design details (e.g., number of participants, duration of
data collection, compensation), and data analysis requirements (e.g., employ-
ing team members with necessary data science skills, paying for additional
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computing power). For example, the main cost associated with data storage
stem from the fact that sensors can generate hundreds of gigabytes of data for
each participant and day of data collection, based on sampling rates, types of
data collected, and other external factors. To give a more concrete illustration in
the case of the previously discussed Beiwe Research Platform, data collection
costs (excluding participant compensation) can range from a few thousand dol-
lars for a small-sized, short-duration study (e.g., 25 people for 6 months) to tens
of thousands of dollars for a large-sized, long-duration study (e.g., 100 people
for 12 months) (Beiwe as a Service Pricing, 2018). One possible strategy for
alleviating such costs is by collaborating with other researchers to combine ef-
forts and resources toward large-scale data collection efforts that can be used
to answer many research questions (e.g., by collecting a broad set of variables).
For example, the PhoneStudy Project (https://osf.io/ut42y/) brought together a
multidisciplinary team to collect smartphone sensing data to address research
questions across several domains (e.g., autistic traits, sensation seeking, and
sleep rhythms, Big Five personality traits). Such large-scale collaborative stud-
ies are likely to be more affordable and the findings more replicable than their
small-sized, short-duration counterparts. Moreover, different teams of nontech-
nical researchers can collectively rely on the technical expertise of a few com-
puter science experts in order to ensure smooth data collection efforts for one
large-scale study, allowing for the effective troubleshooting of any critical data
collection issues that arise.

Data wrangling and analysis
Given that sensing studies typically result in the generation of large-scale
datasets that are often messy (e.g., contain artifacts and faulty measurements),
nontechnical researchers recruit one or two individuals in their research team
with data science skills and acumen. These individuals can work toward wran-
gling the collected data so it can be analyzed by other members of the data team
that are less familiar with data engineering practices. While data wrangling
processes might be relatively computationally exhaustive, the actual analysis of
the wrangled data can be relatively simple. For instance, researchers can gener-
ate simple descriptives of aggregated sensing data from different modalities to
indicate baseline patterns of sensed behaviors, and even adopt simple linear re-
gression analyses to address basic hypotheses concerning sensed behaviors and
other psychological variables.

It is especially important to develop evaluation metrics that can be ap-
plied to machine learning projects in order to facilitate comparisons of algo-
rithms used across different studies and different datasets. It has been suggested
that mobile sensing researchers use certain preexisting datasets to establish a
benchmark performance that is common across other areas of machine learn-
ing research, such as in natural language processing, in order to establish an

https://osf.io/ut42y/
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interoperable baseline accuracy for all developed models (Stachl, Pargent, et
al., 2019).

Sampling and participant incentives
Most ubicomp devices, excluding perhaps the smartphone, are concentrated in
high-income households in the western hemisphere. Hence, ubicomp research
conducted through devices other than smartphones is likely to be fixated on
western, highly educated, and relatively well-off populations (Henrich, Heine,
& Norenzayan, 2010), in the near future. However, developing robust re-
search platforms with existing ubicomp users can benefit behavioral research at
large as this initial development in the western hemisphere will lay the techni-
cal groundwork for conducting research with more diverse populations around
the world (e.g., Khwaja et al., 2019). Mobile app platforms have the func-
tionality to recruit smartphone-using participants all over the world, and these
types of studies can be publicized using popular channels of media such as ra-
dio and newspaper. It is possible to envisage a future wherein sensing-based
psychological studies recruit participants from across the world in order to con-
struct a sample that represents the global demographic profile. Participants can
be incentivized to participate through monetary compensation and to receive
feedback about their behavior through self-tracking functionalities (e.g., Vaid
& Harari, 2019). This kind of research will greatly benefit psychological sci-
ence at large, by allowing researchers to determine the cultural bounds of their
findings. Moreover, in studying the daily context of diverse individuals, ubi-
comp technologies offer a unique edge to psychologists as they will continue
to become a staple in the daily life of their consumers, offering psychologists
with a uniquely subtle research tool that generates highly granular data. Fu-
ture research should focus on understanding how psychologists can gain ac-
cess to the kind of data collected by smart home devices, as this data is typ-
ically safeguarded under the pretense of intellectual property by the corpora-
tions that manufacture and sell smart-home devices. Researchers can develop
smart-home research platforms akin to those used to conduct smartphone sens-
ing research in order to facilitate research projects that use smart-home devices
as primary mechanisms of data collection.

Participant incentives are another challenge for this type of research. For
example, sensing methods are often used alongside more traditional self-report
methods (e.g., one-time surveys, experience sampling questions) to collect in-
formation about a person’s subjective psychological experiences. While partic-
ipants are not actively involved in the sensing component of data collection,
they must often complete a range of surveys and experience sampling ques-
tions at different times throughout the study duration in order for researchers
to obtain psychologically active information that is then used as ground truth
in their work. As a result, ensuring that study participants are consistently en-
gaged with the more active components of the study is a challenge. Hence, the
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quality of the data generated by the experience sampling components of the
study is contingent on how engaged the participants are throughout the course
of a study, which in turn is contingent on how the participants are compensated
in exchange for their sustained participation throughout the study.

Ethical considerations

Researchers should also be mindful of the ethical quandaries associated with
conducting such studies, given the scope of data they collect and its potential
for misuse. Here, we discuss three broad ethical issues that are particularly rel-
evant for research using ubicomp devices: (1) data security, (2) balancing pri-
vacy concerns and intrusiveness of data collection, and (3) the ethical implica-
tions of research questions.

Data security
Data collected from ubicomp studies can be varyingly identifiable and might
contain different levels of personal information to the participants. As partic-
ipants’ everyday lives are being measured, quantified, and examined closely,
researchers need to take steps to ensure that data is collected, transferred, and
stored in a manner that protects the participants’ privacy. For instance, if re-
searchers choose to collect data from smartphone microphones, then they must
deal with this data in a highly precautious manner as participant recordings may
include identifiable information that can be misused against participants if they
are accessed by rogue individuals. Hence, data must be encrypted at the point
of collection, stored in a facility that is password encrypted, and only be trans-
ferred via secure networks. Almost all of the open-source and commercial plat-
forms available today take such precautions. For instance, Beiwe is designed to
enable the Health Insurance Portability and Accountability Act (HIPAA)-com-
pliant security standards to facilitate studies within clinical populations.

Privacy concerns and intrusiveness
Transparency, informed consent, and strict data handling procedures can help
offset some of the privacy concerns associated with the collection of ubicomp
data. Researchers conducting studies with ubicomp devices must contend with
a key tradeoff: how to address privacy concerns while collecting data from
personal devices? And what is the least intrusive level of data needed to an-
swer the team’s research questions? For instance, consider a case where a re-
searcher is interested in examining the daily patterns of sociability amongst
some group of individuals. If the researcher is purely interested in patterns of
sociability, then they can elect to not collect direct microphone recordings but
instead focus on collecting data about the frequencies and duration of ambient
conversations. Insofar as the content of the conversations is not of direct and
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monumental importance to a researcher’s scientific question, this information
simply does not need to be collected, and its absence will have little to no im-
pact on the scientific findings of the researcher. Similarly, potentially sensitive
data that absolutely needs to be collected can be aggregated at the point of data
collection in order to add increased anonymity. For instance, participants’ con-
versations can be subject to linguistic analyses at the point of data collection,
which would give researchers access only to these aggregated characteristics of
participant conversations. This reduces the intrusiveness of the study without
any significant impairments to its scientific merits.

Research questions
Perhaps most crucially, researchers must contend with the ethical scope of
their research questions at large. Sensing capabilities afford researchers the po-
tential to build surveillance-driven applications that can be of special interest
to malicious entities that aim to exploit this technology for their own means.
For instance, researchers might want to study the extent to which participants’
well-being states can be automatically predicted from their sensing data. The
researchers must not only consider the positive implications of their work (e.g.,
that clinical intervention can be staged at timely intervals to users) but also the
negative implications of their work (e.g., that marketing agencies may use this
data to manipulate users into purchasing “feel-good” products, especially when
they are suffering from poor well-being: see Appel & Matz in the present issue
for further discussion of psychological targeting). In cases where the possibil-
ity of misuse is high, the specific ethical considerations of the work should be
developed by the authors at the time of study conception, and warnings about
potential negative applications of the research should be explicitly stated at the
time of publication. When the potential for misuse is clear, participants should
also be informed about it before they decide to consent to data collection. Ul-
timately, researchers must work closely with the Institutional Review Board
members at their organizations to gauge the ethical scope and potential down-
stream impacts of their studies, weighing the research objectives of a given
study based on its potential to cause harm or better the quality of life for to par-
ticipants and the general public.

Future directions

Smartphone research
A main weakness of the current smartphone-based ubicomp research is the
plurality of existing data collection platforms and protocols, which makes
cross-study comparisons difficult. A second weakness is the absence of reliable,
commonly accepted open-source software that multidisciplinary researchers
can use to run smartphone sensing studies. Future smartphone-based research
should focus especially on the development of a sensing-based re

Ubiquitous computing for person-environment research Chapter | 4



UN
CO

RR
EC

TE
D

PR
OO

F

30 Measuring and Modeling Persons and Situations

search platform that can be easily used by nontechnical researchers at large.
Current open-source platforms offer increased levels of usability over custom
proof-of-concept platforms, but still require collaboration with technical re-
searchers in order to be deployed and facilitate an uninterrupted data collec-
tion. As social scientists begin to familiarize themselves with computer science
and data science methods, the development of a standardized data collection
platform for smartphone sensing research will go a long way in facilitating the
adoption of ubicomp research in the social science research community.

Many smartphone sensing research platforms tend to consume battery life,
which impairs the performance of the device being used. This is problematic
because the smartphone’s reduced battery life might be noticeable to the partic-
ipant, hindering the nonintrusiveness of the research and possibly leading them
to stop participating in the study. Future research should address these weak-
nesses by prioritizing the development of smartphone sensing platforms that are
not overly taxing on the hardware of the smartphone used by the participants of
the study.

Future smartphone sensing research positioned at the nexus of social sci-
ence and computer science should focus on delineating some of the pressing
questions concerned with the dynamics of psychological processing. The true
power of emerging ubicomp research methods lies in the longitudinal nature of
the data they collect—sensing data that is collected at a granular time scale over
a large amount of time, for a large amount people. This kind of time-based re-
search can facilitate the development of a true psychology of daily life. A com-
mon critique of psychology has been its focus on doing research in laboratory
settings, where it is difficult to introduce time and diverse settings as indepen-
dent variables. With the advent of smartphone sensing research that is more
long-term and occurs in the daily life context of individuals, time-series analy-
ses can be used to uncover the causal relations between different everyday ex-
periences and their subsequent effects on dynamic psychological states. Smart-
phone sensing research can also enrich experimental approaches by offering
researchers a means to assess the efficacy of randomized interventions in the
daily life of participants by gauging the extent of behavior change occurringd
after an intervention.

Wearable research
Wearables have the potential to offer unprecedented psychological insights into
those contexts where individuals typically find it hard to access their phones,
or situations in which the phone is typically not present. Especially, in the con-
text of fitness settings, wearables are likely to become the most commonly used
technologies in comparison to smartphones. The usability of wearables in fit-
ness settings will uniquely position them as central research instruments that
psychologists can use to address questions about health behaviors
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(e.g., gym visits, specific exercises). Moreover, wearables can offer important
convergent validity to measures that previously were only gleaned from the
smartphone (e.g., for movement behaviors, see Mannini et al., 2013).

Smart-home research
An important limitation of smart-home technologies is their inaccessibility to
nontechnical researchers, especially those in the social sciences. Currently, it
remains unclear how social scientists can obtain data collected by smart-home
devices to conduct relevant research, as most of the collected data is proprietary
and closely guarded by companies manufacturing smart-home devices. This
problem is further exacerbated by a general sparsity of smart-home research, in
comparison to smartphone and wearable research. These weaknesses should be
addressed by (1) collaborations between industrial and academic scholars to in-
centivize access to proprietary smart home data for research purposes and (2)
through the development of open-source software suites that allow nontechni-
cal researchers to collect data from smart-home devices for scholarly purposes.

Future research should examine how the environment of the home influ-
ences behavior. Keeping in mind the aforementioned privacy challenges, this
research could focus on gleaning meaningful information from voice data,
which users rely on to communicate with one of the most common smart home
devices—the smart speaker. The development of voice-controlled ubicomp de-
vices offers a particularly promising avenue to explore exactly how much psy-
chological information can be gleaned from the voices of users. Similarly, other
devices such as smart-vacuum cleaners that automatically move through liv-
ing spaces in order to clean them offer potentially useful tools for conduct-
ing psychological research related to environments. Individuals leave a be-
havioral residue that reflects their personality in their living spaces (Gosling,
Ko, Mannarelli, & Morris, 2002), and a wide variety of smart-home de-
vices may be able to detect such traces from participants’ homes. An impor-
tant challenge in realizing this potential is gaining access to proprietary data
that is typically only available to researchers at companies that manufacture and
sell smart-home products. These data access issues can be partially addressed
through the creation of collaborative structures between industrial and acade-
mic researchers, such as Social Science One (https://socialscience.one/).

Conclusion
In this chapter, we show that the advent of ubicomp devices provides a timely
opportunity for researchers to conduct person-environment research in the
context of daily life. Our illustrative literature review suggests that smart-
phones, wearables, and smart-home devices are already being used to assess
behavioral, personal, and environmental factors with varying levels of success.
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The propensity for false positives and false negatives results to emerge in mo-
bile sensing research is a problem that suggests progress is needed to move to-
ward better approximations of ground truth to evaluate different assessment and
predictive techniques. At present, what appears to be needed most are a com-
mon set of best practices with regard to methodological standards and ethical
guidelines for conducting and evaluating such research. Moreover, cross-dis-
ciplinary initiatives developed to increase the collaboration between scholars
from technical and substantive fields must further a vision for a research agenda
that capitalizes on the psychological potential of emerging ubicomp devices. In
the decade since the widespread adoption and penetration of the smartphone
amongst people around the world, the smartphone has introduced a paradigm
shift for thinking about how psychological science can be conducted in the
wild. The collection of ecologically valid, multimodal data about people in
their natural contexts will continue with the introduction of new types of ubi-
comp technology. These new sources of information are sure to benefit our un-
derstanding of and assessment of behaviors, persons, and environments in the
years to come.
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